'Hidden' driver discovered that helps prime the anti-tumor immune response

May 30, 2018, St. Jude Children's Research Hospital
In this study, authors used an interdisciplinary approach, integrating systems biology with the immunology expertise. (Study authors Xingrong Du, Hongbo Chi and Jiyang Yu). Credit: St. Jude Children's Research Hospital

Like exposing a crime boss whose authority has gone undetected, St. Jude Children's Research Hospital scientists have identified a hidden driver that influences production of the T cells that fight cancer and infections. The study appears today as an advance online publication in the journal Nature.

The hidden drivers are kinases (enzymes) Mst1 and Mst2. Researchers showed Mst1 and Mst2 work together to regulate the of different dendritic cell types (subsets). Dendritic are key regulators of the adaptive immune system, including the T cells that are central to cancer immunotherapy.

"Dendritic cells are crucial for activating the adaptive , including priming anti-tumor T cells," said Hongbo Chi, Ph.D., a member of the St. Jude Department of Immunology. "But regulation of the distinct functions of different dendritic cell subsets have been poorly understood. We wanted to change that.

"These findings provide clues for new treatment strategies for cancer or immune disorders by modulating the activity of to shape the immune response," said Chi, who is co-corresponding author of the research with Jiyang Yu, Ph.D., an assistant member of the St. Jude Department of Computational Biology. Xingrong Du, Ph.D., a postdoctoral fellow in Chi's laboratory, is the first author.

Taking a Systems Approach

A data-driven, systems biology algorithm called NetBID played a key role in the research. Yu and his colleagues developed NetBID, short for data-driven network-based Bayesian inference of drivers.

Yu and his team integrated gene expression, whole proteomics and phosphorylated proteomics data from Chi's laboratory and other sources to reverse engineer biologic networks in mouse dendritic cells. Researchers used NetBID to analyze differences in networks of the different dendritic cell subtypes. To their surprise, Mst1/2 and the Hippo signaling pathway emerged as a key regulator of dendritic cell function and the T cell response.

"The Hippo pathway is known for regulating organ size in animals, not immune function in dendritic cells," Chi said. Yu compared Mst1/2 to a crime boss whose role is concealed behind several layers of subordinates. "A data-driven systems approach gave us a way to find the hidden drivers that underlie the differential functions of the dendritic cell subsets," Yu said.

A data-driven, systems biology algorithm called NetBID played a key role in the research. Yu and his colleagues developed NetBID, to analyze differences in networks of the different dendritic cell subtypes. An example of the NetBID network used for this study. Credit: Jiyang Yu / St. Jude Children's Research Hospital

Interdisciplinary collaboration was essential to the research, Chi added.

Metabolism and Signaling

This study focused on dendritic cell subsets that have distinct effects on the immune system. One, CD8α+ dendritic cells, primes production of CD8 T cells central to fighting tumors and infections. The other, CD8α- dendritic cells, primes production of a different T cell subtype.

Researchers compared metabolic activity in the different dendritic cells and found that the CD8α+ dendritic cells were more metabolically active than CD8α- dendritic cells. They reached that conclusion by comparing oxygen metabolism in the cells' power plants, mitochondria. Investigators also showed that manipulating metabolism affected CD8α+ dendritic cell function and T cell priming.

"While metabolism is known to be important generally in the immune response, this study defines, we believe for the first time, that not only is it important in dendritic cell function, but that the two dendritic cell subsets have distinct metabolism controlled by Hippo signaling," Chi said. "In addition, we showed that manipulating metabolism directly affects function of the dendritic cell subset."

Researchers also showed that Mst1/2 played a pivotal role in cytokine signaling, which is essential for priming T cells and ensuring a robust immune response. Cytokines are small secreted molecules that modulate the immune response.

Rather than working through the conventional signaling pathways, investigators showed that Mst1/2 takes an unconventional route to prime T cells. Mst1/2 uses the NF-κB signaling pathway rather than convention pathways to trigger production of the cytokine interleukin-12 (IL-12). IL-12 promotes CD8α+ dendritic cell function and primes CD8 T cell responses.

"The research shows that Mst1/2 integrate metabolic activity and cytokine signaling to selectively drive CD8α+ dendritic cell function," Chi said.

"The NetBID algorithm can be used to mine other datasets for hidden drivers and explore biological questions," Yu said. "The algorithm has already been used to analyze network differences among different cancer subtypes or between drug-resistant and sensitive cancer patients for identification of potential therapeutic targets and biomarkers. The key is data-driven and context-specific networks," he said.

Explore further: Study provides insights on immune cells involved in kidney disease

More information: Hippo/Mst signaling couples metabolic state and immune function of CD8a+dendritic cells, Nature (2018). DOI: 10.1038/s41586-018-0177-0 , www.nature.com/articles/s41586-018-0177-0

Related Stories

Study provides insights on immune cells involved in kidney disease

December 7, 2017
Researchers have uncovered new information on cells involved in the body's immune response following kidney injury. The findings, which appear in an upcoming issue of the Journal of the American Society of Nephrology (JASN), ...

Signaling molecule identified as essential for maintaining a balanced immune response

July 26, 2011
(Medical Xpress) -- St. Jude Children’s Research Hospital investigators have identified a signaling molecule that functions like a factory supervisor to ensure that the right mix of specialized T cells is available to ...

Researchers discover new approach to stimulate an immune response against tumor cells

January 30, 2018
New drugs that activate the immune system to target cancer cells have improved the lives of many patients with cancer. However, immunotherapies are not effective in all patients, and the success of these therapies depends ...

New types of blood cells discovered

April 21, 2017
Scientists have identified new classes of cells in the human immune system.

Study explores emerging role of NAD+ in innate and adaptive immune responses

February 23, 2018
Researchers at Brigham and Women's Hospital (BWH) have discovered a new cellular and molecular pathway that regulates CD4+ T cell response—a finding that may lead to new ways to treat diseases that result from alterations ...

Boosting cancer therapy with cross-dressed immune cells

January 22, 2018
Researchers at EPFL have created artificial molecules that can help the immune system to recognize and attack cancer tumors. The study is published in Nature Methods.

Recommended for you

A bad influence—the interplay between tumor cells and immune cells

October 16, 2018
Research at Huntsman Cancer Institute (HCI) at the University of Utah (U of U) yielded new insights into the environment surrounding different types of lung tumors, and described how these complex cell ecosystems may in turn ...

Function of neutrophils during tumor progression unraveled

October 15, 2018
Researchers at The Wistar Institute have characterized the function of neutrophils, a type of white blood cells, during early stages of tumor progression, showing that they migrate from the bone marrow to distant sites and ...

Immune health maintained by meticulously ordered DNA

October 15, 2018
Walter and Eliza Hall Institute researchers have revealed how immune health is maintained by the exquisite organisation skills of a protein called Pax5.

New immunotherapy targeting blood-clotting protein

October 15, 2018
Normally, the blood protein fibrin does not enter the brain. But in several neurological disorders, the blood-brain barrier—which keeps large molecules in the blood from entering the brain—becomes abnormally permeable, ...

Enzyme that triggers autoimmune responses from T-cells in patients with MS found

October 11, 2018
A team of researchers from Switzerland, the U.S. and Spain has isolated an enzyme that triggers an autoimmune response from T-cells in patients with MS. In their paper published in the journal Science Translational Medicine, ...

Scientists reveal new cystic fibrosis treatments work best in inflamed airways

October 11, 2018
A new UNC School of Medicine study shows that two cystic fibrosis (CF) drugs aimed at correcting the defected CFTR protein seem to be more effective when a patient's airway is inflamed. This is the first study to evaluate ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.