Researcher patents 'roach motel' for cancer

May 14, 2018 by Louisa Kellie, University of Texas at Arlington
A cancer trap. Credit: UTA

The University of Texas at Arlington has successfully patented in Europe an implantable medical device that attracts and kills circulating cancer cells that was invented by a faculty member. This cancer trap can be used for early diagnosis and treatment of metastasized cancer.

"Our cancer trap works just like a roach motel, where you put in some bait and the roach goes there and dies," said Liping Tang, UTA bioengineering professor and leader of the research. "We are putting biological agents in a cancer trap to attract and kill cancer cells.

"This method is effective for both diagnosing and treating metastasis cancer and can be used in combination with traditional chemotherapy and radiation therapy," he added.

Currently, there are many treatments for primary tumors but they do little to prevent metastasis and stray cancer cells from relocating to another part of the body. Surgical removal of cancerous tissue also can spur the spread of cancer in the body. While there are drugs given to patients after surgery to prevent cancer cells from adhering to each other or other tissues, these drugs do not rid the body of cancer cells or collect them to allow an assessment of the patient's status.

"We have made a nano-sized device that we can put under the skin using an injection needle to recruit the cancer cells into a small area where we can treat them with less overall side effects to the whole body," Tang said.

"So the cancer trap is really complementary to current cancer treatments and especially beneficial at the early stages when it is difficult to see if the cancer is spreading as there are few cancer cells. We have also found it very effective in late stage cancers to stop the spread of the disease and to prolong lifespan," he added.

The cancer trap works by releasing different chemokines or regulatory proteins to attract circulating cancer cells and then expose them to chemotherapeutic agents to eradicate potential spreading. The trap has been tested in the lab and proved effective on many kinds of , including melanoma, prostate cancer, breast cancer, lung cancer, leukemia and esophageal cancer.

"We are hoping to move toward clinical trials in the next few years as this technology could potentially significantly increase the lifespan of cancer patients," Tang said.

This work on forms part of a larger program at UTA where more than 30 faculty from different colleges and disciplines are developing new solutions to attack this disease.

Tang's expertise encompasses a broad area, including stem , tissue engineering, nanotechnology, biocompatibility, biomaterials, inflammation, infection and fibrosis. He has published many of his work in high impact journals, including Biomaterials, Journal of Clinical Investigation, Proceedings of the National Academy of Sciences, Blood, Journal of Experimental Medicine, and Tissue Engineering.

Explore further: Researchers identify compound to prevent breast cancer cells from activating in brain

Related Stories

Researchers identify compound to prevent breast cancer cells from activating in brain

March 22, 2018
Researchers at Houston Methodist used computer modeling to find an existing investigational drug compound for leukemia patients to treat triple negative breast cancer once it spreads to the brain.

Two drugs are better than one in fight against leukaemia

March 8, 2018
Adelaide scientists have devised a way to enhance the effectiveness of a patient's leukaemia treatment by using a combination of drugs.

New understanding of why cancer cells move

December 27, 2017
A University of Hawai'i Cancer Center researcher has identified how some cancer cells are made to move during metastasis. The research provides a better understanding of how cancer spreads and may create new opportunities ...

Researchers discover protein that may control the spread of cancer

February 26, 2013
Researchers at the University of Hawai'i Cancer Center have uncovered a novel mechanism that may lead to more selective ways to stop cancer cells from spreading. Associate Professor Joe W. Ramos PhD, a cancer biologist at ...

Research team identifies role for a microRNA involved in prostate cancer metastasis

January 25, 2017
Metastasis, or spread of a tumor from the site of origin to additional organs, causes the vast majority of cancer-related deaths, but our understanding of the molecular mechanisms behind metastasis remains limited. A research ...

Tumor cells in blood samples could predict prostate cancer spread

November 3, 2016
Researchers have found a group of circulating tumour cells in prostate cancer patient blood samples which are linked to the spread of the disease, according to new research presented at the National Cancer Research Institute ...

Recommended for you

A bad influence—the interplay between tumor cells and immune cells

October 16, 2018
Research at Huntsman Cancer Institute (HCI) at the University of Utah (U of U) yielded new insights into the environment surrounding different types of lung tumors, and described how these complex cell ecosystems may in turn ...

Student develops microfluidics device to help scientists identify early genetic markers of cancer

October 16, 2018
As anyone who has played "Where's Waldo" knows, searching for a single item in a landscape filled with a mélange of characters and objects can be a challenge. Chrissy O'Keefe, a Ph.D. student in the Department of Biomedical ...

Technique to 'listen' to a patient's brain during tumour surgery

October 16, 2018
Surgeons could soon eavesdrop on a patient's brain activity during surgery to remove their brain tumour, helping improve the accuracy of the operation and reduce the risk of impairing brain function.

Researchers elucidate roles of TP63 and SOX2 in squamous cell cancer progression

October 16, 2018
Squamous cell carcinomas (SCCs) are aggressive malignancies arising from the squamous epithelium of various organs, such as the esophagus, head and neck, lungs, and skin. Previous studies have demonstrated that two master ...

Function of neutrophils during tumor progression unraveled

October 15, 2018
Researchers at The Wistar Institute have characterized the function of neutrophils, a type of white blood cells, during early stages of tumor progression, showing that they migrate from the bone marrow to distant sites and ...

Delving where few others have gone, leukemia researchers open new path

October 15, 2018
A Wilmot Cancer Institute study uncovers how a single gene could be at fault in acute myeloid leukemia (AML), one of the deadliest cancers. The breakthrough gives researchers renewed hope that a gene-targeted therapy could ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.