Alzheimer's disease: How amyloid aggregates alter neuronal function

June 12, 2018, CNRS
Rat hippocampal neurons in primary culture, showing a fluorescent soluble protein (left) and trajectories corresponding to the movement of the glutamate receptors on its surface, measured by following individual molecules. Credit: Patricio Opazo/Daniel Choquet/IINS

While the harmful effects of amyloid peptide aggregates observed in Alzheimer's disease are well established, the mechanism through which they act on brain cells remains ill-defined. Researchers from CNRS and universite de Bordeaux have just revealed that they alter the usual functioning of connections between neurons by interacting with a key enzyme of synaptic plasticity. The results will be published on June 12, 2018 in the journal Cell Reports.

Alzheimer's disease, which affects nearly 1 million French people, is characterized by a premature alteration of the patient's cognitive faculties, followed by in late stages. Three types of brain lesions are characteristic of the illness: , fibrillar degeneration, and the accumulation of amyloid peptides that form on . The respective involvement of these different elements in developing the symptoms of the illness is still poorly understood.

Researchers knew, for instance, that amyloid peptides disrupt synapses-the area of contact and chemical communication between neurons-but did not understand how they did so until the research conducted by teams from l'Institut interdisciplinaire de neurosciences (CNRS/universite de Bordeaux). Their findings have revealed the molecular mechanism that links amyloid aggregates and deficient synaptic function observed in animal models of Alzheimer's disease: peptide oligomers interact with a key enzyme in synaptic balance, thereby preventing its normal mobilization.

Alzheimer's disease: How amyloid aggregates alter neuronal function
The measure of the activity of the CaMKII enzyme, triggered by the application of amyloid peptide oligomers in rat hippocampal neurons in culture. Image on left: basic level of CaMKII activity. Image on right: activation of CaMKII by the amyloid peptide. Credit: Patricio Opazo/Daniel Choquet/IINS

The molecule, called CamKII, usually orchestrates , an aspect of neuronal adaptability that enables neurons to reinforce their responses to the signals they exchange. Groups of neurons that code for an information to be memorized are connected by synapses, which are themselves under the control of mechanisms of synaptic plasticity. When the connection between two neurons must be reinforced in order to memorize information, for instance during intense stimulation, CamKII is activated and leads to a chain of reactions that strengthen the capacity to transmit messages between these . Synaptic plasticity is central to memory and learning. Amyloid peptides prevent CamKII from participating to this process of synaptic plasticity, and this blockage eventually leads to the disappearance of the synapse. This discovery could find an application in early phases of Alzheimer's disease when initial cognitive deficiencies are observed, which could be linked to this synaptic malfunction.

The goal for researchers now is to continue studying aggregates, especially by trying to prevent their interaction with CamKII and the loss of synapses observed during the disease.

Explore further: Key mechanism discovered which prevents memory loss in Alzheimer's disease

Related Stories

Key mechanism discovered which prevents memory loss in Alzheimer's disease

January 26, 2016
Neurons communicate with one another by synaptic connections, where information is exchanged from one neuron to its neighbor. These connections are not static, but are continuously modulated in response to the ongoing activity ...

Alzheimer's disease: Neuronal loss very limited

January 17, 2018
Frequently encountered in the elderly, Alzheimer's is considered a neurodegenerative disease, which means that it is accompanied by a significant, progressive loss of neurons and their nerve endings, or synapses. A joint ...

Memory molecule limits plasticity by calibrating calcium

May 23, 2018
The brain has an incredible capacity to support a lifetime of learning and memory. Each new experience fundamentally alters the connections between cells in the brain called synapses. To accommodate synaptic alterations, ...

Researchers successfully reverse Alzheimer's disease in mouse model

February 14, 2018
A team of researchers from the Cleveland Clinic Lerner Research Institute have found that gradually depleting an enzyme called BACE1 completely reverses the formation of amyloid plaques in the brains of mice with Alzheimer's ...

Overactive scavenger cells may cause neurodegeneration in Alzheimer's

June 30, 2017
For the first time, researchers from the University of Zurich demonstrate a surprising effect of microglia, the scavenger cells of the brain: If these cells lack the TDP-43 protein, they not only remove Alzheimer's plaques, ...

Discovery of a new mechanism for controlling memory

September 14, 2017
Researchers in Bordeaux recently discovered a new mechanism for storing information in synapses and a means of controlling the storage process. The breakthrough moves science closer to unveiling the mystery of the molecular ...

Recommended for you

Study clarifies ApoE4's role in dementia

September 20, 2018
ApoE4, a protein linked to both Alzheimer's disease and a form of dementia caused by damage of blood vessels in the brain, increases the risk of cognitive impairment by reducing the number and responsiveness of blood vessels ...

Machine learning IDs markers to help predict Alzheimer's

September 19, 2018
Nearly 50 million people worldwide have Alzheimer's disease or another form of dementia. These irreversible brain disorders slowly cause memory loss and destroy thinking skills, eventually to such an extent that self-care ...

Discovery could explain failed clinical trials for Alzheimer's, and provide a solution

September 19, 2018
Researchers at King's College London have discovered a vicious feedback loop underlying brain degeneration in Alzheimer's disease which may explain why so many drug trials have failed. The study also identifies a clinically ...

Air pollution may be linked to heightened dementia risk

September 18, 2018
Air pollution may be linked to a heightened risk of developing dementia, finds a London-based observational study, published in the online journal BMJ Open. The associations found couldn't be explained by factors known to ...

A new approach for finding Alzheimer's treatments

September 11, 2018
Considering what little progress has been made finding drugs to treat Alzheimer's disease, Maikel Rheinstädter decided to come at the problem from a totally different angle—perhaps the solution lay not with the peptide ...

Study prevents cognitive decline in older blacks with memory loss

September 10, 2018
With nearly twice the rate of dementia as whites, blacks are at a higher risk for developing diseases like Alzheimer's, but there has been little research on how to reduce this racial health disparity. A new study in black ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

lane_simonian
not rated yet Jun 12, 2018
Amyloid oligomers and dozens of other factors (inlcuding various environmental toxins, a diet high in sugar, high fructose corn syrup, carbohydrates, and salt, and psychological stress) prevents the calmodulin-dependent protein kinase II from helping to regenerate neurons and synapses in the hippocampus via the phosphatidlinositol 3-kinase. The nitration of the latter kinase leads to the death of synapses and neurons rather than to their regeneration.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.