Researchers transform human blood cells into functional neurons

June 4, 2018, Stanford University Medical Center
Credit: CC0 Public Domain

Human immune cells in blood can be converted directly into functional neurons in the laboratory in about three weeks with the addition of just four proteins, researchers at the Stanford University School of Medicine have found.

The dramatic transformation does not require the cells to first enter a state called pluripotency but instead occurs through a more direct process called transdifferentiation.

The conversion occurs with relatively high efficiency—generating as many as 50,000 neurons from 1 milliliter of —and it can be achieved with fresh or previously frozen and stored blood samples, which vastly enhances opportunities for the study of neurological disorders such as schizophrenia and autism.

"Blood is one of the easiest biological samples to obtain," said Marius Wernig, MD, associate professor of pathology and a member of Stanford's Institute for Stem Cell Biology and Regenerative Medicine. "Nearly every patient who walks into a hospital leaves a blood sample, and often these samples are frozen and stored for future study. This technique is a breakthrough that opens the possibility to learn about complex disease processes by studying large numbers of patients."

A paper describing the findings will be published online June 4 in the Proceedings of the National Academy of Sciences. Wernig is the senior author. Former postdoctoral scholar Koji Tanabe, Ph.D., and graduate student Cheen Ang are the lead authors.

Dogged by challenges

The transdifferentiation technique was first developed in Wernig's laboratory in 2010 when he and his colleagues showed that they could convert mouse skin cells into mouse neurons without first inducing the cells to become pluripotent—a developmentally flexible stage from which the cells can become nearly any type of tissue. They went on to show the technique could also be used on human skin and liver cells.

But each approach has been dogged by challenges, particularly for researchers wishing to study genetically complex mental disorders, such as autism or schizophrenia, for which many hundreds of individual, patient-specific samples are needed in order to suss out the relative contributions of dozens or more disease-associated mutations.

"Generating induced from large numbers of patients is expensive and laborious. Moreover, obtaining skin cells involves an invasive and painful procedure," Wernig said. "The prospect of generating iPS cells from hundreds of patients is daunting and would require automation of the complex reprogramming process."

Although it's possible to directly convert skin cells to neurons, the biopsied first have to be grown in the laboratory for a period of time until their numbers increase—a process likely to introduce genetic mutations not found in the person from whom the cells were obtained.

The researchers wondered if there was an easier, more efficient way to generate patient-specific neurons.

'Somewhat mindboggling'

In the new study, Wernig and his colleague focused on highly specialized called T cells that circulate in the blood. T cells protect us from disease by recognizing and killing infected or cancerous cells. In contrast, neurons are long and skinny cells capable of conducting electrical impulses along their length and passing them from cell to cell. But despite the cells' vastly different shapes, locations and biological missions, the researchers found it unexpectedly easy to complete their quest.

"It's kind of shocking how simple it is to convert T cells into functional neurons in just a few days," Wernig said. "T cells are very specialized immune with a simple round shape, so the rapid transformation is somewhat mind-boggling."

The resulting human neurons aren't perfect. They lack the ability to form mature synapses, or connections, with one another. But they are able to carry out the main fundamental functions of , and Wernig and his colleague are hopeful they will be able to further optimize the technique in the future. In the meantime, they've started to collect blood samples from children with autism.

"We now have a way to directly study the neuronal function of, in principle, hundreds of people with schizophrenia and autism," Wernig said. "For decades we've had very few clues about the origins of these disorders or how to treat them. Now we can start to answer so many questions."

Explore further: The joy of neurons: A simplified 'cookbook' for engineering brain cells to study disease

More information: Koji Tanabe el al., "Transdifferentiation of human adult peripheral blood T cells into neurons," PNAS (2018). www.pnas.org/cgi/doi/10.1073/pnas.1720273115

Related Stories

The joy of neurons: A simplified 'cookbook' for engineering brain cells to study disease

May 9, 2018
Scientists at The Scripps Research Institute have devised what they call a "neuronal cookbook" for turning skin cells into different types of neurons. As reported today in the journal Nature, the research opens the door to ...

Interconnected cells-in-a-dish let researchers study brain disease

May 3, 2018
By creating multiple types of neurons from stem cells and observing how they interact, Salk scientists have developed a new way to study the connections between brain cells in the lab. Using the technique, which generates ...

Nerve cells actively repress alternative cell fates, researchers find

April 5, 2017
A neural cell maintains its identity by actively suppressing the expression of genes associated with non-neuronal cell types, including skin, heart, lung, cartilage and liver, according to a study by researchers at the Stanford ...

Scientists turns liver cells directly into neurons with new technique

October 7, 2011
(Medical Xpress) -- Fully mature liver cells from laboratory mice have been transformed directly into functional neurons by researchers at the Stanford University School of Medicine. The switch was accomplished with the introduction ...

Creating neurons directly from skin cells of humans

May 27, 2011
The New York Stem Cell Foundation (NYSCF) – a non-profit organization dedicated to advancing cures for major diseases through stem cell research – today applauded the announcement by Stanford University scientists, ...

Recommended for you

Team develops new way to grow blood vessels

August 17, 2018
Formation of new blood vessels, a process also known as angiogenesis, is one of the major clinical challenges in wound healing and tissue implants. To address this issue, researchers from Texas A&M University have developed ...

New imaging technique can spot tuberculosis infection in an hour

August 16, 2018
Guided by glowing bacteria, researchers have devised an imaging technique that can diagnose live tuberculosis in an hour and help monitor the efficacy of treatments. That's particularly critical because many TB strains have ...

Obesity, infertility and oxidative stress in mouse egg cells

August 16, 2018
Excessive body fat is associated with negative effects on female fertility and pregnancy. In mice, maternal obesity impairs proper development of egg precursor cells called oocytes. In a recent paper published in Molecular ...

Research shows it's possible to reverse damage caused by aging cells

August 15, 2018
What's the secret to aging well? University of Minnesota Medical School researchers have answered it- on a cellular level.

This matrix delivers healing stem cells to injured elderly muscles

August 15, 2018
A car accident leaves an aging patient with severe muscle injuries that won't heal. Treatment with muscle stem cells from a donor might restore damaged tissue, but doctors are unable to deliver them effectively. A new method ...

Male tobacco smokers have brain-wide reduction of CB1 receptors

August 15, 2018
Chronic, frequent tobacco smokers have a decreased number of cannabinoid CB1 receptors, the "pot receptor", when compared with non-smokers, reports a study in Biological Psychiatry.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.