New platform poised to be next generation of genetic medicines

July 16, 2018, City of Hope
City of Hope's Saswati Chatterjee (left), Ph.D., discovered a gene-editing technology that could efficiently and accurately correct the genetic defects that underlie certain diseases. Credit: City of Hope

A City of Hope scientist has discovered a gene-editing technology that could efficiently and accurately correct the genetic defects that underlie certain diseases, positioning the new tool as the basis for the next generation of genetic therapies.

This editing platform, discovered by City of Hope's Saswati Chatterjee, Ph.D., eventually may be used to cure inherited and acquired diseases.

"Our editing platform provides a new tool for the precise correction of genetic mutations in this rapidly growing field," said Chatterjee, senior author of the new study and a professor in the Department of Surgery at City of Hope. "Think of it as swapping out a mutated gene for a healthy gene to correct genetic mutations."

The proof-of-concept study, published in the journal Proceedings of the National Academy of Sciences on July 16, spotlights a promising new gene-editing platform that may eventually be used to treat diseases such as , hemophilia (a condition that reduces the ability of blood to clot) and other genetic disorders, Chatterjee said.

This genome-editing platform, tested using human blood and tissue as well as in preclinical models, is based on a family of nondisease-causing viruses known as adeno-associated viruses (AAV).

"Although injecting viruses into humans may sound alarming, a large portion of the population already has been exposed to AAV with no harmful consequences in their normal life," Chatterjee said.

Chatterjee's research group isolated a subgroup of AAV known as AAVHSCs, which originate from human . The team discovered that AAVHSCs have the ability to efficiently deliver corrective DNA sequences to the nuclei of targeted cells in the body. Through a process called homologous recombination, these corrective sequences replace disease-causing in the genome. Since the therapeutic correction is at the genome level, it should lead to lifelong correction.

"We found that AAVHSC-based editing vectors can efficiently edit the genome following a single administration," Chatterjee said. "We hope to use these properties to develop widespread and accessible genome editing used to treat genetic diseases around the world."

The editing platform works efficiently in stem cells and mature cells, including adult liver and muscle cells. Successful utilization of AAV has the potential to change the world of gene editing, said Yuman Fong, M.D., co-author of the study and the Sangiacomo Family Chair in Surgical Oncology at City of Hope.

"We at City of Hope are attempting to build the foundation for another landmark treatment, like we did for synthetic human insulin," Fong said. "The potential of altering the course of genetic diseases is immense. Pairing the right AAV with blood stem is going to be an instrumental technique for precision medicine, the next frontier of medical treatment."

Chatterjee and her colleagues still have much work to do to characterize how this platform works and to develop it into therapeutics. They will address these questions in future studies.

This year, Chatterjee received a $2 million grant from the California Institute of Regenerative Medicine to develop a permanent cure for hemophilia A.

City of Hope licensed the pioneering AAV gene editing technology exclusively to Homology Medicines Inc. in May 2016. Chatterjee is the scientific co-founder of Homology Medicines and the chair of the company's scientific advisory board. The genetic medicines company went public in March 2018. Homology Medicines has entered into a research and development collaboration with Novartis.

Explore further: CRISPR genome editing technology can correct alpha-1 antitrypsin deficiency

More information: Laura J. Smith el al., "Stem cell-derived clade F AAV mediates high-efficiency homologous recombination-based genome editing," PNAS (2018).

Related Stories

CRISPR genome editing technology can correct alpha-1 antitrypsin deficiency

July 2, 2018
Groundbreaking research demonstrates proof-of-concept for using CRISPR-Cas9 genome editing technology to correct the gene mutation responsible for alpha-1 antitrypsin (AAT) deficiency, successfully making a targeted gene ...

Genome-editing tool could increase cancer risk

June 11, 2018
Therapeutic use of gene editing with the CRISPR-Cas9 technique may inadvertently increase the risk of cancer, according to a new study from Karolinska Institutet, Sweden, and the University of Helsinki, Finland, published ...

Scientists generate an atlas of the human genome using stem cells

April 23, 2018
Scientists from the Hebrew University of Jerusalem have generated an atlas of the human genome using a state-of-the-art gene editing technology and human embryonic stem cells, illuminating the roles that our genes play in ...

New genome-editing method 'cuts back' on unwanted genetic mutations

February 5, 2018
Gene therapy is an emerging strategy to treat diseases caused by genetic abnormalities. One form of gene therapy involves the direct repair of a defective gene, using genome-editing technology such as CRISPR-Cas9. Despite ...

A delivery platform for gene-editing technology

February 21, 2018
A new delivery system for introducing gene-editing technology into cells could help safely and efficiently correct disease-causing mutations in patients. The system, developed by KAUST scientists, is the first to use sponge-like ...

Will AAV vectors have a role in future novel gene therapy approaches?

March 20, 2017
Recombinant adeno-associated virus (rAAV) vectors for delivering therapeutic genes have demonstrated their safety in multiple diseases and clinical settings over the years and are a proven and effective tool that can be used ...

Recommended for you

How a single faulty gene can lead to lupus

December 18, 2018
A research team at the Academy of Immunology and Microbiology, within the Institute for Basic Science (IBS) & Pohang University of Science and Technology (POSTECH) in South Korea has discovered the role of a key gene involved ...

Get a warrant: Researchers demand better DNA protections

December 18, 2018
New laws are required to control access to medical genetic data by law enforcement agencies, an analysis by University of Queensland researchers has found.

New genetic testing technology enhances precision of analysis of clinical biomarkers

December 18, 2018
Estonian scientists have announced the invention of a genetic testing technology to analyse the number of clinical biomarkers at the single-molecule level, which enhances the sensitivity of tests in precision medicine and ...

Geneticists make new discovery about how a baby's sex is determined

December 14, 2018
Medical researchers at Melbourne's Murdoch Children's Research Institute have made a new discovery about how a baby's sex is determined—it's not just about the X-Y chromosomes, but involves a 'regulator' that increases ...

Scientists identify method to study resilience to pain

December 14, 2018
Scientists at the Yale School of Medicine and Veterans Affairs Connecticut Healthcare System have successfully demonstrated that it is possible to pinpoint genes that contribute to inter-individual differences in pain.

Researchers uncover molecular mechanisms linked to autism and schizophrenia

December 13, 2018
Since the completion of the groundbreaking Human Genome Project in 2003, researchers have discovered changes to hundreds of places in the DNA, called genetic variants, associated with psychiatric diseases such as autism spectrum ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Jul 16, 2018
I'm skeptical to say the least

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.