Heart-brain connection could be predictive biomarker for epilepsy

August 27, 2018, Pennsylvania State University
Generalized 3 Hz spike and wave discharges in a child with childhood absence epilepsy. Credit: Wikipedia.

Heartbeat irregularities connected to brain activity abnormalities may lead to the ability to predict eventual epileptic seizures in subjects who suffered physical or infectious brain insults, according to Penn State researchers who studied mouse models of cerebral malaria, which often causes epilepsy in those who survive.

"We were developing, in a project led by Steven Schiff (Brush Chair Professor of Engineering in the Departments of Neurosurgery, Engineering Science and Mechanics and Physics, and director of the Center for Neural Engineering), a mouse model for induced by cerebral malaria, a disease that causes rapid coma and death in children aged 2 to 5," said Bruce Gluckman, professor of engineering science and mechanics, neurosurgery and biomedical engineering and associate director, Penn State Center for Neural Engineering. "Typically, with treatment, only about 80 percent of infected individuals survive. Of our mouse survivors, 75 percent developed spontaneous seizures."

Cerebral malaria causes death and brain injuries, including epilepsy in Africa and East Asia where those strains of malaria are endemic. However, other diseases and physical trauma also cause injuries that eventually lead to epilepsy. Acquired epilepsy does not occur immediately after brain injury. Visible symptoms can occur months to years afterwards, according to Gluckman.

"Fatemeh was looking at the data for the signature of a sleep state when she noticed that there were times in the animals when they appeared to miss a heartbeat," said Gluckman. "The beat-to-beat intervals were really long and associated with abnormal ."

Fatemeh Bahari, graduate student in and mechanics, brought the coincidence of heart and brain anomalies to Gluckman, noting that these occurred only in mice that later developed seizures.

"First I saw the beat-to-beat interval and it looked like something," said Bahari. "I took it to Dr. Gluckman and he said 'prove it.'"

Gluckman suggested that Bahari show, in more detail, that there was a relationship between the anomalous heart and brain readings, and also show that they could predict which mice would develop epilepsy. They report the results of that work today (Aug. 27) in the Journal of Neuroscience.

Bahari's initial investigation looked only at very large deviations in heart rhythm and brain waves. Her subsequent study relaxed the restriction of 1.5 times the normal interval of heartbeats and instead used an empirical statistical approach to determine the normal intervals for each individual. She then located any abnormalities, even small ones.

The researchers correlated the more relaxed heart-rate abnormalities to similarly relaxed indications of unusual brain activity. They found that anomalous brain activity slightly preceded the heart rate anomalies. In the initial experiment, spearheaded by Paddy Ssentongo, who is now assistant research professor at the Center for Neural Engineering and Engineering Science and Mechanics, the researchers used electrocardiographs and electroencephalographs to monitor the heart rates and brain waves, respectively.

The researchers had a population of 13 mice that survived suitable for analysis. Nine of those mice eventually developed seizures, while four did not. Another four mice never had malaria, but received the same antibiotic treatment as the diseased mice and were the control group. None of the control group developed epilepsy. From these 17 animals, the researchers had 788 full recording days of heart and brain measurements.

Using the individualized algorithm for the mice, the researchers were able to determine for each recording day which mice would develop epilepsy with 100 percent accuracy, without tuning or otherwise manipulating the data.

"There is currently no biomarker to determine who will develop epilepsy after a brain insult," said Gluckman. "With this delayed coincidence from to heart, we can clearly separate the that became epileptic from those that did not, weeks before development of epilepsy."

He suggests that these finding will likely be applicable in other models of acquired epilepsy. The results allow for tracking the long-term development of epilepsy and could not only identify individuals at risk, but also show when treatment is not working or how well it works.

"We want to repeat this analysis using data from epileptic patients," said Gluckman.

The researchers have filed a provisional patent on this work and continue with their work on malaria as well.

Explore further: Team develops first-of-a-kind model to research post-malaria epilepsy

Related Stories

Team develops first-of-a-kind model to research post-malaria epilepsy

March 23, 2017
A first-of-its-kind mouse model could lead to an understanding of how cerebral malaria infection leads to the development of epilepsy in children, and to the prevention of seizures. The model—a way for researchers to simulate ...

Brain activity between seizures in genetic form of epilepsy

September 13, 2017
New research shows that in a mouse model of childhood absence epilepsy, brain activity is perturbed between seizures. The researchers speculate that this could underlie cognitive problems of the disease, which can persist ...

Brain waves may predict and potentially prevent epilepsy

December 21, 2017
Ben-Gurion University of the Negev (BGU) researchers have discovered a promising biomarker for predicting and potentially preventing epileptic seizures in patients with brain injuries using EEG (electroencephalographic) recordings ...

Repairing a leaky blood-brain barrier in epilepsy

April 9, 2018
Blocking the activity of an enzyme that has a key role in the generation of recurring seizures may provide a new way to treat epilepsy that is resistant to anti-seizure drugs, according to a study of rats and mice published ...

Hope for new treatment of severe epilepsy

April 17, 2018
Researchers at Lund University in Sweden believe they have found a method that in the future could help people suffering from epilepsy so severe that all current treatment is ineffective. "In mice studies, we succeeded in ...

Recommended for you

Motor learning for precise motor execution

September 26, 2018
Scientists at Tokyo Metropolitan Institute of Medical Science, RIKEN, National Center of Neurology and Psychiatry, Nozomi Hospital and Tokyo Medical and Dental University have identified acquisition of two types of internal ...

Diversity in the brain—how millions of neurons become unique

September 26, 2018
How is it possible that so many different and highly specific neuron types arise in the brain? A mathematical model developed by researchers from the University of Basel's Biozentrum demonstrates that different variants of ...

Sensitive babies become altruistic toddlers

September 25, 2018
Our responsiveness to seeing others in distress accounts for variability in helping behavior from early in development, according to a study published September 25 in the open-access journal PLOS Biology by Tobias Grossmann ...

Immune cell pruning of dopamine receptors may modulate behavioral changes in adolescence

September 25, 2018
A study by MassGeneral Hospital for Children (MGHfC) researchers finds that the immune cells of the brain called microglia play a crucial role in brain development during adolescence, but that role is different in males and ...

Researchers identify new cause of brain bleeds

September 25, 2018
A team of researchers including UCI project scientist Rachita Sumbria, Ph.D. and UCI neurologist Mark J. Fisher, MD have provided, for the first time, evidence that blood deposits in the brain may not require a blood vessel ...

Scientists reverse a sensory impairment in mice with autism

September 25, 2018
Using a genetic technique that allows certain neurons in the brain to be switched on or off, UCLA scientists reversed a sensory impairment in mice with symptoms of autism, enabling them to learn a sensory task as quickly ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.