Researchers discover new type of lung cell, critical insights for cystic fibrosis

August 1, 2018, Broad Institute of MIT and Harvard
Pulmonary ionocytes (orange) extend through neighboring epithelial cells in the upper respiratory tract of the mouse, to the surface of the epithelial lining. Cell nuclei in cyan. Credit: Montoro et al./Nature 2018

Researchers have identified a rare cell type in airway tissue, previously uncharacterized in the scientific literature, that appears to play a key role in the biology of cystic fibrosis. Using new technologies that enable scientists to study gene expression in thousands of individual cells, the team comprehensively analyzed the airway in mice and validated the results in human tissue.

Led by researchers from the Broad Institute of MIT and Harvard and Massachusetts General Hospital (MGH), the molecular survey also characterized patterns for other new cell subtypes. The work expands scientific and clinical understanding of lung biology, with broad implications for all diseases of the airway—including asthma, chronic obstructive pulmonary disease, and bronchitis.

Jayaraj Rajagopal, a physician in the Pulmonary and Critical Care Unit at MGH, associate member at the Broad Institute, and a Howard Hughes Medical Institute (HHMI) faculty scholar, and Broad core institute member Aviv Regev, director of the Klarman Cell Observatory at the Broad Institute, professor of biology at MIT, and an HHMI investigator, supervised the research. Daniel Montoro, a graduate student in Rajagopal's lab, and postdoctoral fellows Adam Haber and Moshe Biton in the Regev lab are co-first authors on the paper published today in Nature.

"We have the framework now for a new cellular narrative of lung disease," said Rajagopal, who is also a professor at Harvard Medical School and a principal faculty member at the Harvard Stem Cell Institute. "We've uncovered a whole distribution of cell types that seem to be functionally relevant. What's more, genes associated with complex lung diseases can now be linked to specific cells that we've characterized. The data are starting to change the way we think about lung diseases like and asthma."

"With single-cell sequencing technology, and dedicated efforts to map cell types in different tissues, we're making new discoveries—new cells that we didn't know existed, cell subtypes that are rare or haven't been noticed before, even in systems that have been studied for decades," said Regev, who is also co-chair of the international Human Cell Atlas consortium. "And for some of these, understanding and characterizing them sheds new light immediately on what's happening inside the tissue."

Using single-cell RNA sequencing, the researchers analyzed tens of thousands of cells from the mouse airway, mapping the physical locations of cell types and creating a cellular "atlas" of the tissue. They also developed a new method called pulse-seq to monitor development of from their progenitors in the mouse airway. The findings were validated in human tissue.

One extremely rare cell type, making up less than one percent of the cell population in mice and humans, appeared radically different from other known cells in the dataset. The team dubbed this cell the "pulmonary ionocyte" because its gene expression pattern was similar to ionocytes—specialized cells that regulate ion transport and hydration in fish gills and frog skin.

Newly identified, rare pulmonary ionocytes (green) dot the landscape of ciliated cells (magenta) of the mouse lung airway lining. Credit: Montoro et al./Nature 2018

Strikingly, at levels higher than any other cell type, these ionocytes expressed the gene CFTR—which, when mutated, causes cystic fibrosis in humans. CFTR is critical for airway function, and for decades researchers and clinicians have assumed that it is frequently expressed at low levels in ciliated cells, a common cell type spread throughout the entire airway.

But according to the new data, the majority of CFTR expression occurs in only a few cells, which researchers didn't even know existed until now.

When the researchers disrupted a critical molecular process in pulmonary ionocytes in mice, they observed the onset of key features associated with cystic fibrosis—most notably, the formation of dense mucus. This finding underscores how important these cells are to airway-surface regulation.

"Cystic fibrosis is an amazingly well-studied disease, and we're still discovering completely new biology that may alter the way we approach it," said Rajagopal. "At first, we couldn't believe that the majority of CFTR expression was located in these rare cells, but the graduate students and postdocs on this project really brought us along with their data."

The results may also have implications for developing targeted cystic fibrosis therapies, according to the team. For example, a gene therapy that corrects for a mutation in CFTR would need to be delivered to the right cells, and a cell atlas of the tissue could provide a reference map to guide that process.

The study further highlighted where other disease-associated genes are expressed in the airway. For example, asthma development has been previously linked with a gene that encodes a sensor for rhinoviruses, and the data now indicate that this gene is expressed by ciliated cells. Another gene linked with asthma is expressed in tuft cells, which separated into at least two groups—one that senses chemicals in the airway and one that produces inflammation. The results suggest that a whole ensemble of cells may be responsible for different aspects of asthma.

Using the pulse-seq assay, the researchers tracked how the newly characterized cells and subtypes in the mouse airway develop. They demonstrated that mature cells in the airway arise from a common progenitor: the basal . The team also discovered a previously undescribed cellular structure in the tissue. These structures, which the researchers called "hillocks," are unique zones of rapid cell turnover, and their function is not yet understood.

"The atlas that we've created is already starting to drastically re-shape our understanding of and lung biology," said Regev. "And, for this and other organ systems being studied at the single-cell level, we'll have to drape everything we know on top of this new cellular diversity to understand human health and disease."

Explore further: New research finds novel method for generating airway cells from stem cells

More information: Daniel T. Montoro et al, A revised airway epithelial hierarchy includes CFTR-expressing ionocytes, Nature (2018). DOI: 10.1038/s41586-018-0393-7

Related: Lindsey W. Plasschaert et al. A single-cell atlas of the airway epithelium reveals the CFTR-rich pulmonary ionocyte, Nature (2018). DOI: 10.1038/s41586-018-0394-6

Related Stories

New research finds novel method for generating airway cells from stem cells

March 30, 2017
Researchers have developed a new approach for growing and studying cells they hope one day will lead to curing lung diseases such as cystic fibrosis through "personalized medicine."

Lung stem cells repair airways after injury

April 12, 2018
The human airway is a system of branching tubes that connects the nose and mouth with the lungs and allows us to inhale air, extract the vital oxygen, and exhale the waste product carbon dioxide. A layer of epithelial cells ...

3-D organoids and RNA sequencing reveal the crosstalk driving lung cell formation

September 7, 2017
To stay healthy, our lungs have to maintain two key populations of cells: the alveolar epithelial cells, which make up the little sacs where gas exchange takes place, and bronchiolar epithelial cells (also known as airway ...

Ivacaftor improves smooth muscle function in cystic fibrosis patients

April 7, 2016
Cystic fibrosis (CF) is caused by mutations in the chloride channel CFTR, which disrupts fluid transport in the lungs. CF patients have a variety of complications, including airway obstruction, infection, and pathological ...

Trials show unique stem cells a potential asthma treatment

June 28, 2017
A study led by scientists at Monash University has shown that a new therapy developed through stem cell technology holds promise as a treatment for chronic asthma.

Recommended for you

Study examines disruption of circadian rhythm as risk factor for diseases

December 11, 2018
USC scientists report that a novel time-keeping mechanism within liver cells that helps sustain key organ tasks can contribute to diseases when its natural rhythm is disrupted.

New light-based technology reveals how cells communicate in human disease

December 11, 2018
Scientists at the University of York have developed a new technique that uses light to understand how cells communicate in human disease.

Researchers explore new way of killing malaria in the liver

December 8, 2018
In the ongoing hunt for more effective weapons against malaria, international researchers said Thursday they are exploring a pathway that has until now been little studied—killing parasites in the liver, before the illness ...

Study may offer doctors a more effective way to treat neuroblastoma

December 7, 2018
A very large team of researchers, mostly from multiple institutions across Germany, has found what might be a better way to treat patients with neuroblastoma, a type of cancer. In their paper published in the journal Science, ...

Progress made in transplanting pig hearts into baboons

December 6, 2018
A large team of researchers from several institutions in Germany, Sweden, Switzerland and the U.S. has transplanted pig hearts into baboons and kept them alive for an extended period of time. In their paper published in the ...

'Chemo brain' caused by malfunction in three types of brain cells, study finds

December 6, 2018
More than half of cancer survivors suffer from cognitive impairment from chemotherapy that lingers for months or years after the cancer is gone. In a new study explaining the cellular mechanisms behind this condition, scientists ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.