Nerve cells use brain waves to judge importance

August 9, 2018, Universitaet Tübingen
Credit: CC0 Public Domain

The precise interaction of brain waves and nerve cells may be decisive for the amazing ability of our brain to separate important from unimportant information, even when we are flooded with stimuli. Researchers at the University of Tübingen and the Technical University of Munich have been able to show through experiments on Rhesus monkeys that the exact point in time at which certain nerve cells discharge seems to play a key role in separating "the wheat from the chaff" in working memory. The findings will be published on Wednesday in the scientific journal Neuron.

At work, on the road or in the midst of a crowd – every day we are all exposed to situations in which we are confronted with a multitude of stimuli. Nevertheless, we act purposefully and safely in such situations. Our working memory seems to be able to effortlessly filter out relevant information and ignore the other, unimportant stimuli. In order to find out what is happening in the , the Tübingen researchers trained to separate relevant numbers, which they had to remember in a short time, from interfering numbers. During the experiment, the electrical signals of nerve cells in the cerebral cortex of the animals were measured using microelectrodes. The scientists observed that the simultaneous discharge of thousands of nerve cells caused large-scale oscillating fluctuations ("") in .

Low frequency waves (known as theta waves) of four to ten cycles per second, proved to be particularly decisive. "We observed that both the relevant and the interfering information was transmitted in this theta frequency range," said Professor Andreas Nieder from the Institute of Neurobiology at the University of Tübingen. "However, the nerve cells responsible for the relevant information always discharged when the theta wave was at its lowest point. Contrarily, the nerve cells responsible for the disturbing stimulus always fired at the time when the theta wave was at its peak. We believe that the brain uses certain frequency channels to transmit information synchronously, but at the same time this wealth of information is also sorted according to whether it is important and unimportant during the transmission between brain areas," explains Nieder.

The leading author of the study, Dr. Simon Jacob, a neurologist at the Klinikum rechts der Isar at the Technical University of Munich, emphasizes the medical significance of the study: "Our results show that cognitive brain functions require precise interaction of . It makes sense to use the mechanisms investigated in the animal model for therapeutic purposes in patients with memory disorders, for example by stimulating coordinated communication between the brain regions studied." Further studies will, however, be necessary to show whether the results of the study can be regarded as a general principle for how the brain processes cognitive information across separate areas of the brain.

Explore further: Do not disturb: How the brain filters out distractions

More information: Evan G Antzoulatos et al. Synchronous beta rhythms of frontoparietal networks support only behaviorally relevant representations, eLife (2016). DOI: 10.7554/eLife.17822

Related Stories

Do not disturb: How the brain filters out distractions

July 4, 2014
You know the feeling? You are trying to dial a phone number from memory… you have to concentrate…. then someone starts shouting out other numbers nearby. In a situation like that, your brain must ignore the distraction ...

Timing is crucial from the brain to the spinal cord

May 9, 2018
Just a slight movement of the hand is an intricate concert of interactions between nerve cells. For a signal from the brain to reach the spinal cord and then the muscle, different neuronal networks must find a common rhythm. ...

Waves move across the human brain to support memory

June 7, 2018
The coordination of neural activity across widespread brain networks is essential for human cognition. Researchers have long assumed that oscillations in the brain, commonly measured for research purposes, brain-computer ...

Fluctuations in size of brain waves contribute to information processing

February 8, 2013
Cyclical variations in the size of brain wave rhythms may participate in the encoding of information by the brain, according to a new study led by Colin Molter of the Neuroinformatics Japan Center, RIKEN Brain Science Institute.

Brain's motor cortex uses multiple frequency bands to coordinate movement

February 21, 2014
Synchrony is critical for the proper functioning of the brain. Synchronous firing of neurons within regions of the brain and synchrony between brain waves in different regions facilitate information processing, yet researchers ...

Synchronized brain waves in distant regions combine memories

January 29, 2016
Humans have the remarkable ability to integrate information from multiple memories and infer indirect relationships. How does our brain support this important function? Neuroscientists from the Donders Institute at Radboud ...

Recommended for you

Research shows signalling mechanism in the brain shapes social aggression

October 19, 2018
Duke-NUS researchers have discovered that a growth factor protein, called brain-derived neurotrophic factor (BDNF), and its receptor, tropomyosin receptor kinase B (TrkB) affects social dominance in mice. The research has ...

Good spatial memory? You're likely to be good at identifying smells too

October 19, 2018
People who have better spatial memory are also better at identifying odors, according to a study published this week in Nature Communications. The study builds on a recent theory that the main reason that a sense of smell ...

How clutch molecules enable neuron migration

October 19, 2018
The brain can discriminate over 1 trillion odors. Once entering the nose, odor-related molecules activate olfactory neurons. Neuron signals first accumulate at the olfactory bulb before being passed on to activate the appropriate ...

Scientists discover the region of the brain that registers excitement over a preferred food option

October 19, 2018
At holiday buffets and potlucks, people make quick calculations about which dishes to try and how much to take of each. Johns Hopkins University neuroscientists have found a brain region that appears to be strongly connected ...

Gene plays critical role in noise-induced deafness

October 19, 2018
In experiments using mice, a team of UC San Francisco researchers has discovered a gene that plays an essential role in noise-induced deafness. Remarkably, by administering an experimental chemical—identified in a separate ...

Weight loss success linked with active self-control regions of the brain

October 18, 2018
New research suggests that higher-level brain functions have a major role in losing weight. In a study among 24 participants at a weight-loss clinic, those who achieved greatest success in terms of weight loss demonstrated ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.