Gene therapy shown to remove core component of Parkinson's disease

September 14, 2018, Rush University Medical Center
Photomicrograph of regions of substantia nigra in a Parkinson's patient showing Lewy bodies and Lewy neurites in various magnifications. Top panels show a 60-times magnification of the alpha synuclein intraneuronal inclusions aggregated to form Lewy bodies. The bottom panels are 20 × magnification images that show strand-like Lewy neurites and rounded Lewy bodies of various sizes. Neuromelanin laden cells of the substantia nigra are visible in the background. Stains used: mouse monoclonal alpha-synuclein antibody; counterstained with Mayer's haematoxylin. Crdit: Suraj Rajan

An international team led by Rush researcher Jeffrey Kordower, Ph.D., has moved a step closer to developing a treatment to clear brain cells of a protein that is an integral cause of Parkinson's disease. The team published the findings of their study in the Aug. 22 issue of Nature Parkinson's Disease.

Parkinson's disease is a chronic, progressive movement disorder that affects the body's ability to control movement. The condition is a result of damage to that produce dopamine, a chemical that relays messages to the parts of the brain that control movement, resulting in trembling, stiffness, slow movement and poor balance and coordination.

Working with rats induced with a simulation of Parkinson's disease, Kordower's team showed that a genetically engineered fragment of an antibody—called a nanobody—cleared away toxic clumps of the protein after the team injected the nanobody into the rats' brains.

The hope is that once this therapy is introduced, it will continue to keep brain cells clear of the alpha-synuclein for the rest of the person's life, said Kordower, a professor in Rush Medical College's Department of Neurological Sciences, where he also is director of the Section of Neurobiology.

Fixing cells from within

Alpha-synuclein, abbreviated as α-syn, occurs naturally in the brain and elsewhere in the body. In neurological disorders, however, the protein clusters in misfolded (abnormally clumped together) and disordered forms. In Parkinson's disease—known as PD for short—malformed α-syn accumulates in distinctive formations called Lewy bodies, which is considered an integral part of PD.

"We're looking for ways to reduce alpha-synuclein levels, accumulation and toxicity resulting from the spread of alpha-synuclein around the nervous system," Kordower said.

The treatment his team is testing is part of a rapidly evolving approach that deploys therapeutic nanobodies to invade cells as part of genetically-altered viruses. In this study, once inside the cell, the nanobody appears to have stopped the clumping of the dysfunctional α-syn that leads to a loss of nerve cells and, eventually, full-blown PD. Stopping the clumping should prevent the progression of the disease.

This study is the first to use nanobodies for PD. Some previous research has shown promise with clearing α-syn in areas outside the cells, but Kordower believes an intracellular approach could be even more effective, because the amount of α-syn within cells is more plentiful than the amount outside them. "If you reduce intracellular levels, chances are that the a-synuclein won't get extracellular, so it won't spread," Kordower elaborated.

Letting PESTs inside

His team created an "overexpression" (overabundance) of α-syn in the test rats' brains. They then tested two types of the gene therapy, each on a different group of rats, and used saline in a , to see if the nanobodies could clear away the clutter inside those cells. The nanobodies were custom-made for the study by the University of North Carolina Vector Core.

One of the treatments, VH14*PEST, clearly worked best. It improved dopamine levels and reduced motor-function symptoms significantly better than the saline given the control group. VH14*PEST measurably improved the symptoms by one measure, the stepping test, and somewhat by another measure called the cylinder test.

VH14*PEST accomplished these results by reducing the levels of an amino acid in α-syn called Serine-129 that had undergone a chemical reaction called phosphorylation (the addition of a phosphate). Amino acids are the building blocks of proteins, and Serine-129 is a normal component of α-syn, but phosphorylated Serine-129 causes the deformities in α-syn that are seen in PD.

"The decrease in serine 129 phospho synuclein demonstrates the success of the nanobodies in reducing pathological alpha synuclein in the brain," Kordower said.

The second nanobody the team tried, NbSyn87*PEST, was effective, but less so overall, and had side effects like increased inflammation. PEST refers to a sequence of the proline, aspartate or glutamate, serine and threonine, which targets proteasomes – combinations of proteins that work to break down unneeded or damaged proteins. This PEST sequence has been found to be an effective intervention against disordered proteins such as the excessive α-syn found in Parkinson's.

'Humanizing' a PEST

Given the promising results of the VH14*PEST treatment, Kordower and his team plan to pursue it further. First, though, the group has to fully "humanize" the compound it used in the rat model. That is, they have to make it safe for people.

"Then we have to repeat these studies, in rats, with the humanized version to make sure it is as effective as the ones we've been testing," which were compatible with a rodent's physiology, Kodower explained. Only then can the team consider using the therapy in clinical trials in humans.

Down the road, this nanobody treatment could have implications for other parts of the brain as well, including the cortex, where misfolded α-syn may cause dementia, Kordower added.

Explore further: Study identifies chaperone protein implicated in Parkinson's disease

More information: Diptaman Chatterjee et al. Proteasome-targeted nanobodies alleviate pathology and functional decline in an α-synuclein-based Parkinson's disease model, npj Parkinson's Disease (2018). DOI: 10.1038/s41531-018-0062-4

Related Stories

Study identifies chaperone protein implicated in Parkinson's disease

August 13, 2018
Reduced levels of a chaperone protein might have implications for the development and progression of neurodegenerative diseases such as Parkinson's disease and Lewy body dementia, according to new research from investigators ...

Tug of war between Parkinson's protein and growth factor

September 18, 2017
Alpha-synuclein, a sticky and sometimes toxic protein involved in Parkinson's disease (PD), blocks signals from an important brain growth factor, Emory researchers have discovered.

Drug discovery: Alzheimer's and Parkinson's spurred by same enzyme

July 3, 2017
Alzheimer's disease and Parkinson's disease are not the same. They affect different regions of the brain and have distinct genetic and environmental risk factors.

Study uncovers cause of cell death in Parkinson's disease

February 26, 2018
A University of Guelph researcher has discovered one of the factors behind nerve cell death in Parkinson's disease, unlocking the potential for treatment to slow the progression of this fatal neurodegenerative disorder.

Study raises doubts on a previous theory of Parkinson's disease

July 6, 2018
Parkinson's disease was first described by a British doctor more than 200 years ago. The exact causes of this neurodegenerative disease are still unknown. In a study recently published in eLife, a team of researchers led ...

Calcium may play a role in the development of Parkinson's disease

February 19, 2018
Researchers have found that excess levels of calcium in brain cells may lead to the formation of toxic clusters that are the hallmark of Parkinson's disease.

Recommended for you

Researchers find inhibiting one protein destroys toxic clumps seen in Parkinson's disease

November 14, 2018
A defining feature of Parkinson's disease is the clumps of alpha-synuclein protein that accumulate in the brain's motor control area, destroying dopamine-producing neurons. Natural processes can't clear these clusters, known ...

Scalpel-free surgery enhances quality of life for Parkinson's patients, study finds

November 9, 2018
A high-tech form of brain surgery that replaces scalpels with sound waves improved quality of life for people with Parkinson's disease that has resisted other forms of treatment, a new study has found.

Singing may reduce stress, improve motor function for people with Parkinson's disease

November 7, 2018
Singing may provide benefits beyond improving respiratory and swallow control in people with Parkinson's disease, according to new data from Iowa State University researchers.

Scientists overturn odds to make Parkinson's discovery

November 7, 2018
Scientists at the University of Dundee have confirmed that a key cellular pathway that protects the brain from damage is disrupted in Parkinson's patients, raising the possibility of new treatments for the disease.

Road to cell death more clearly identified for Parkinson's disease

November 1, 2018
In experiments performed in mice, Johns Hopkins researchers report they have identified the cascade of cell death events leading to the physical and intellectual degeneration associated with Parkinson's disease.

Appendix removal is linked to lower risk of Parkinson's

October 31, 2018
Scientists have found a new clue that Parkinson's disease may get its start not in the brain but in the gut—maybe in the appendix.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.