Tug of war between Parkinson's protein and growth factor

September 18, 2017, Emory University
Immunohistochemistry for alpha-synuclein showing positive staining (brown) of an intraneural Lewy-body in the Substantia nigra in Parkinson's disease. Credit: Wikipedia

Alpha-synuclein, a sticky and sometimes toxic protein involved in Parkinson's disease (PD), blocks signals from an important brain growth factor, Emory researchers have discovered.

The results are scheduled for publication in PNAS.

The finding adds to evidence that is a pivot for damage to brain cells in PD, and helps to explain why brain cells that produce the are more vulnerable to degeneration.

Alpha-synuclein is a major component of Lewy bodies, the protein clumps that are a pathological sign of PD. Also, duplications of or mutations in the gene encoding alpha-synuclein drive some rare familial cases.

In the current paper, researchers led by Keqiang Ye, PhD demonstrated that alpha-synuclein binds and interferes with TrkB, the receptor for BDNF (brain derived neurotrophic factor). BDNF promotes brain cells' survival and was known to be deficient in Parkinson's patients. When applied to neurons, BDNF in turn sends alpha-synuclein away from TrkB.

A "tug of war" situation thus exists between alpha-synuclein and BDNF, struggling for dominance over TrkB. In cultured neurons and in mice, alpha-synuclein inhibits BDNF's ability to protect from neurotoxins that mimic PD-related damage, Ye's team found.

Previously, overabundant alpha-synuclein was thought to disturb other aspects of neuron function, such as neurotransmitter synthesis and remodeling synapses. Scientists have proposed that "oligomeric" alpha-synuclein (several protein molecules bound together) is more toxic than a single molecule.

It remains unknown whether oligomeric alpha-synuclein associates more robustly with TrkB than monomeric, Ye says. However, the interaction between alpha-synuclein and TrkB can be observed in samples from patients with Lewy body dementia, in which aggregated alpha-synuclein is abundant, but not in control samples.

In addition, the interaction between alpha-synuclein and TrkB appears to respond to current treatments for PD. Neurons that produce dopamine are more sensitive to degeneration in PD, partly because dopamine is itself a reactive and potentially toxic chemical inside cells.

In mice overproducing alpha-synuclein, Ye's team found that DOPAL, a metabolite of dopamine, also enhances observed interactions between alpha-synuclein and TrkB. [DOPAL has been proposed to encourage alpha-synuclein's aggregation.] However, the drug rasagiline, which inhibits the generation of DOPAL, interferes with the alpha-synuclein/TrkB interaction.

Explore further: Drug discovery: Alzheimer's and Parkinson's spurred by same enzyme

More information: Seong Su Kang el al., "TrkB neurotrophic activities are blocked by α-synuclein, triggering dopaminergic cell death in Parkinson's disease," PNAS (2017). www.pnas.org/cgi/doi/10.1073/pnas.1713969114

Related Stories

Drug discovery: Alzheimer's and Parkinson's spurred by same enzyme

July 3, 2017
Alzheimer's disease and Parkinson's disease are not the same. They affect different regions of the brain and have distinct genetic and environmental risk factors.

A new insight into Parkinson's disease protein

July 28, 2017
Abnormal clumps of certain proteins in the brain are a prominent feature of Parkinson's and other neurodegenerative diseases, but the role those same proteins might play in the normal brain has been unknown.

TXNIP blocks autophagic flux, causes alpha-synuclein accumulation

August 2, 2017
(HealthDay)—Thioredoxin-interacting protein (TXNIP) blocks autophagic flux and induces expression of α-synuclein accumulation via inhibition of ATP13A2, according to a study published online July 29 in CNS Neuroscience ...

Pre-clinical study suggests Parkinson's could start in gut endocrine cells

June 15, 2017
Recent research on Parkinson's disease has focused on the gut-brain connection, examining patients' gut bacteria, and even how severing the vagus nerve connecting the stomach and brain might protect some people from the debilitating ...

Parkinson's is partly an autoimmune disease, study finds

June 21, 2017
Researchers have found the first direct evidence that autoimmunity—in which the immune system attacks the body's own tissues—plays a role in Parkinson's disease, the neurodegenerative movement disorder. The findings raise ...

SUMO defeats protein aggregates that typify Parkinson's disease

July 11, 2011
A small protein called SUMO might prevent the protein aggregations that typify Parkinson's disease (PD), according to a new study in the July 11, 2011, issue of The Journal of Cell Biology.

Recommended for you

Half of those on Parkinson's drugs may develop impulse control problems

June 20, 2018
Over time, half of the people taking certain drugs for Parkinson's disease may develop impulse control disorders such as compulsive gambling, shopping or eating, according to a study published in the June 20, 2018, online ...

New evidence sheds light on how Parkinson's disease may happen

June 14, 2018
Researchers at Baylor College of Medicine and Texas Children's Hospital have identified unexpected new key players in the development of an early onset form of Parkinson's disease called Parkinsonism. These key players are ...

Scientists unravel molecular mechanisms of Parkinson's disease

June 12, 2018
Detailed brain cell analysis has helped researchers uncover new mechanisms thought to underlie Parkinson's disease.

First photoactive drug to fight Parkinson's disease

June 8, 2018
An international team has designed the first potentially therapeutic photoactive drug, MRS7145, to fight Parkinson's disease, according to the new article in Journal of Controlled Release.

Researchers address sleep problems in Parkinson's disease

June 7, 2018
A team of researchers at VIB and KU Leuven has uncovered why people with a hereditary form of Parkinson's disease suffer from sleep disturbances. The molecular mechanisms uncovered in fruit flies and human stem cells also ...

Drugs that suppress immune system may protect against Parkinson's

May 31, 2018
People who take drugs that suppress the immune system are less likely to develop Parkinson's disease, according to a study from Washington University School of Medicine in St. Louis.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.