Early research shows promise for therapeutics that delay type 2 diabetes

Credit: CC0 Public Domain

Vanderbilt researchers have discovered a unique pathway that initiates islet β cell inflammation—a hallmark of type 2 diabetes—putting them a step closer to developing targeted therapeutics for the disease that affects one in 10 Americans.

The article, "RIPK3-mediated inflammation is a conserved β-cell response to ER stress" was published in the journal Science Advances on Dec. 18.

Type 2 is caused when islet β in the pancreas fail to produce a sufficient amount of insulin—the hormone that maintains normal blood sugar levels in the body. Before they fail completely, become stressed and inflamed. The phenomenon of islet inflammation is well known, and the disease's pathogenesis has been of interest to Wenbiao Chen, associate professor of molecular physiology and biophysics, throughout his career.

Chen's lab found a protein—receptor-interacting 3—that mediates islet inflammation and the consequent failure and death of β cells. To better understand the pathogenesis of type 2 diabetes, the researchers developed a zebrafish that is predisposed to developing the disease. In the zebrafish model, the researchers found that overeating causes an initial increase in islet β cells, but by the fourth day one-third of the β cells die, and the fish becomes diabetic.

"After screening a variety of chemicals for β cell protective drugs, we focused on a drug that inhibits RIPK3. While this protein is best known for , we were surprised to learn that its function in islet β cells is to cause inflammation," Chen said. They found RIPK3 is activated in the β cells by overeating and also found evidence that a similar response occurs in human β cells.

"It is well recognized that islet inflammation is a critical factor in the pathogenesis of type 2 diabetes, and now we have figured out one of the mechanisms that provoke this ," Chen said.

RIPK3 is present in many tissues and organs throughout the body, and in some tissues, it seems to produce an anti-inflammatory response. Through deeper understanding of how RIPK3 works in β cells, researchers can work on developing drugs that specifically target cells and that don't compromise the benefits of RIPK3 elsewhere. Chen also intends to test whether the inhibitor drug they identified slows down diabetes development in other commonly used models.

More information: Bingyuan Yang et al. RIPK3-mediated inflammation is a conserved β cell response to ER stress, Science Advances (2020). DOI: 10.1126/sciadv.abd7272

Journal information: Science Advances

Citation: Early research shows promise for therapeutics that delay type 2 diabetes (2021, January 13) retrieved 2 June 2023 from https://medicalxpress.com/news/2021-01-early-therapeutics-diabetes.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

Transplanting pancreatic islet cells under the skin to treat diabetes


Feedback to editors