Neuroscience

How retrotransposons control the brain

Around half of the genome is made up of transposable elements or 'jumping genes' that derive from ancient viral integrations. They persist in various states of decay like an old fashioned 'pull your own' junkyard where parts ...

Genetics

Study finds crucial step in DNA repair

Scientists at Washington State University have identified a crucial step in DNA repair that could lead to targeted gene therapy for hereditary diseases such as "children of the moon" and a common form of colon cancer.

Medical research

How chromosomes keep their loose ends loose

We take it for granted that our chromosomes won't stick together, yet this kind of cellular disaster would happen constantly were it not for a protein called TRF2. Now, scientists at The Scripps Research Institute (TSRI) ...

Genetics

Study uncovers hidden DNA mechanisms of rare genetic diseases

Researchers at the Pacific Northwest Research Institute (PNRI) and collaborating institutions have made a discovery that could significantly advance our understanding of genomic disorders. Their latest study, published in ...

Genetics

Rare disease's mutation could explain more common conditions

TREX1 is a gene that is supposed to direct the maintenance of the entire body's DNA, but new research shows that when people are born with mutated TREX1, it causes catastrophic damage to the DNA over time, resulting in a ...

page 1 from 40

DNA repair

DNA repair refers to a collection of processes by which a cell identifies and corrects damage to the DNA molecules that encode its genome. In human cells, both normal metabolic activities and environmental factors such as UV light and Radiation can cause DNA damage, resulting in as many as 1 million individual molecular lesions per cell per day. Many of these lesions cause structural damage to the DNA molecule and can alter or eliminate the cell's ability to transcribe the gene that the affected DNA encodes. Other lesions induce potentially harmful mutations in the cell's genome, which affect the survival of its daughter cells after it undergoes mitosis. Consequently, the DNA repair process is constantly active as it responds to damage in the DNA structure.

The rate of DNA repair is dependent on many factors, including the cell type, the age of the cell, and the extracellular environment. A cell that has accumulated a large amount of DNA damage, or one that no longer effectively repairs damage incurred to its DNA, can enter one of three possible states:

The DNA repair ability of a cell is vital to the integrity of its genome and thus to its normal functioning and that of the organism. Many genes that were initially shown to influence lifespan have turned out to be involved in DNA damage repair and protection. Failure to correct molecular lesions in cells that form gametes can introduce mutations into the genomes of the offspring and thus influence the rate of evolution.

This text uses material from Wikipedia, licensed under CC BY-SA