High levels of glutamate in brain may kick-start schizophrenia

An excess of the brain neurotransmitter glutamate may cause a transition to psychosis in people who are at risk for schizophrenia, reports a study from investigators at Columbia University Medical Center (CUMC) published in the current issue of Neuron.

The findings suggest 1) a potential for identifying those at risk for and 2) a possible glutamate-limiting to prevent or slow progression of schizophrenia and related .

"Previous studies of schizophrenia have shown that hypermetabolism and of the are among the most prominent changes in the patient's brain," said senior author Scott Small, MD, Boris and Rose Katz Professor of Neurology at CUMC. "The most recent findings had suggested that these changes occur very early in the disease, which may point to a brain process that could be detected even before the disease begins."

To locate that process, the Columbia researchers used neuroimaging tools in both patients and a mouse model. First they followed a group of 25 young people at risk for schizophrenia to determine what happens to the brain as patients develop the disorder. In patients who progressed to schizophrenia, they found the following pattern: First, glutamate activity increased in the hippocampus, then hippocampus metabolism increased, and then the hippocampus began to atrophy.

To see if the increase in glutamate led to the other hippocampus changes, the researchers turned to a of schizophrenia. When the researchers increased glutamate activity in the mouse, they saw the same pattern as in the patients: The hippocampus became hypermetabolic and, if glutamate was raised repeatedly, the hippocampus began to atrophy.

Theoretically, this of glutamate and hypermetabolism could be identified through imaging individuals who are either at risk for or in the early stage of disease. For these patients, treatment to control glutamate release might protect the hippocampus and prevent or slow the progression of psychosis.

Strategies to treat schizophrenia by reducing glutamate have been tried before, but with patients in whom the disease is more advanced. "Targeting glutamate may be more useful in high-risk people or in those with early signs of the disorder," said Jeffrey A. Lieberman, MD, a renowned expert in the field of schizophrenia, Chair of the Department of Psychiatry at CUMC, and president-elect of the American Psychiatric Association. "Early intervention may prevent the debilitating effects of schizophrenia, increasing recovery in one of humankind's most costly mental disorders."

In an accompanying commentary, Bita Moghaddam, professor of neuroscience and of psychiatry, University of Pittsburgh, suggests that if excess glutamate is driving schizophrenia in high-risk individuals, it may also explain why a patient's first psychotic episodes are often caused by periods of stress, since stress increases glutamate levels in the brain.

More information: "Imaging Patients with Psychosis and a Mouse Model Establishes a Spreading Pattern of Hippocampal Dysfunction and Implicates Glutamate as a Driver" Neuron, 2013.

Related Stories

Glutamate: Too much of a good thing in schizophrenia?

Oct 27, 2008

Is schizophrenia a disorder of glutamate hyperactivity or hypoactivity? While the predominant hypothesis for many years was that schizophrenia was a glutamate deficit disorder, there is growing evidence of glutamate hyperactivity ...

The mysterious GRIN3A and the cause of schizophrenia

Mar 14, 2013

Since the 1960s, psychiatrists have been hunting for substances made by the body that might accumulate in abnormally high levels to produce the symptoms associated with schizophrenia. In particular, there was a search for ...

Recommended for you

'Chatty' cells help build the brain

12 hours ago

The cerebral cortex, which controls higher processes such as perception, thought and cognition, is the most complex structure in the mammalian central nervous system. Although much is known about the intricate ...

'Trigger' for stress processes discovered in the brain

Nov 27, 2014

At the Center for Brain Research at the MedUni Vienna an important factor for stress has been identified in collaboration with the Karolinska Institutet in Stockholm (Sweden). This is the protein secretagogin ...

New research supporting stroke rehabilitation

Nov 26, 2014

Using world-leading research methods, the team of Dr David Wright and Prof Paul Holmes, working with Dr Jacqueline Williams from the Victoria University in Melbourne, studied activity in an area of the brain ...

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.