Study shows a solitary mutation can destroy critical 'window' of early brain development

June 21, 2013

Scientists from the Florida campus of The Scripps Research Institute (TSRI) have shown in animal models that brain damage caused by the loss of a single copy of a gene during very early childhood development can cause a lifetime of behavioral and intellectual problems.

The study, published this week in the Journal of Neuroscience, sheds new light on the early development of in the cortex, the part of the brain responsible for functions such as , planning and decision-making.

The research also pinpoints the mechanism responsible for the disruption of what are known as "windows of plasticity" that contribute to the refinement of the that broadly shape brain development and the maturing of perception, language, and cognitive abilities.

The key to normal development of these abilities is that the neural connections in the —the synapses—mature at the right time.

In an earlier study, the team, led by TSRI Associate Professor Gavin Rumbaugh, found that in mice missing a single copy of the vital gene, certain synapses develop prematurely within the first few weeks after birth. This accelerated maturation dramatically expands the process known as "excitability"—how often fire—in the hippocampus, a part of the brain critical for memory. The delicate balance between excitability and inhibition is especially critical during early developmental periods. However, it remained a mystery how early maturation of could lead to lifelong cognitive and behavioral problems.

The current study shows in mice that the interruption of the synapse-regulating gene known as SYNGAP1—which can cause a devastating form of and increase the risk for developing autism in humans—induces early functional maturation of neural connections in two areas of the cortex. The influence of this disruption is widespread throughout the developing brain and appears to degrade the duration of these critical windows of plasticity.

"In this study, we were able to directly connect early maturation of synapses to the loss of an important plasticity window in the cortex," Rumbaugh said. "Early maturation of synapses appears to make the brain less plastic at critical times in development. Children with these mutations appear to have brains that were built incorrectly from the ground up."

The accelerated maturation also appeared to occur surprisingly early in the developing cortex. That, Rumbaugh added, would correspond to the first two years of a child's life, when the brain is expanding rapidly. "Our goal now is to figure out a way to prevent the damage caused by SYNGAP1 mutations. We would be more likely to help that child if we could intervene very early on—before the mutation has done its damage," he said.

Explore further: Researchers uncover steps in synapse building, pruning

More information: Clement, J., SYNGAP1 Links the Maturation Rate of Excitatory Synapses to the Duration of Critical-Period Synaptic Plasticity, Journal of Neuroscience, 19 June 2013, 33(25): 10447-10452; doi: 10.1523/JNEUROSCI.0765-13.2013.

Related Stories

Researchers uncover steps in synapse building, pruning

November 16, 2011

Like a gardener who stakes some plants and weeds out others, the brain is constantly building networks of synapses, while pruning out redundant or unneeded synapses. Researchers at The Jackson Laboratory led by Assistant ...

Flip of a single molecular switch makes an old brain young

March 6, 2013

The flip of a single molecular switch helps create the mature neuronal connections that allow the brain to bridge the gap between adolescent impressionability and adult stability. Now Yale School of Medicine researchers have ...

Recommended for you

Umbilical cells help eye's neurons connect

November 24, 2015

Cells isolated from human umbilical cord tissue have been shown to produce molecules that help retinal neurons from the eyes of rats grow, connect and survive, according to Duke University researchers working with Janssen ...

Brain connections predict how well you can pay attention

November 24, 2015

During a 1959 television appearance, Jack Kerouac was asked how long it took him to write his novel On The Road. His response – three weeks – amazed the interviewer and ignited an enduring myth that the book was composed ...

No cable spaghetti in the brain

November 24, 2015

Our brain is a mysterious machine. Billions of nerve cells are connected such that they store information as efficiently as books are stored in a well-organized library. To this date, many details remain unclear, for instance ...

Neurons encoding hand shapes identified in human brain

November 23, 2015

Neural prosthetic devices, which include small electrode arrays implanted in the brain, can allow paralyzed patients to control the movement of a robotic limb, whether that limb is attached to the individual or not. In May ...

Wireless sensor enables study of traumatic brain injury

November 23, 2015

A new system that uses a wireless implant has been shown to record for the first time how brain tissue deforms when subjected to the kind of shock that causes blast-induced trauma commonly seen in combat veterans.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.