Gene loss causes leukemia: study

May 17, 2010

Researchers from VIB and K.U.Leuven, both in Flanders, Belgium, have discovered a new factor in the development of acute lymphoblastic leukemia, a disease that mainly affects children. In the cells of the patients, the specific gene PTPN2 ceases to function, causing the cancer cells to survive longer and grow faster. The study provides genetic and functional evidence for a tumor suppressor role of PTPN2.

In patients with leukemia, the formation of in the is disrupted. This makes leukemia patients particularly susceptible to infections, because properly functioning white blood cells ensure protection against intruders such as viruses and bacteria. In the US alone, every year around 50.000 adults and children develop leukemia.

Leukemia occurs in various forms, one of which is T-cell (T-ALL). Cells that normally develop into white blood cells, start to divide in an uncontrolled way, giving rise to a huge number of immature cells. Until now, few factors have been associated with an increased risk of developing T-ALL, but it is clear that T-ALL develops when errors occur in several genes simultaneously. Therefore, it is not only important to identify that underlie T-ALL, but also to unravel what combinations give rise to the disease. This is a crucial element in the development of future specific combination therapies, promising to be more effective than therapies that focus only on one target.

Maria Kleppe and Jan Cools of VIB-K.U.Leuven, together with Peter Vandenberghe of the Centre for Human Genetics and Jean Soulier of the Hôpital Saint-Louis in Paris, now identified the gene PTPN2 as another major player. In the DNA of the cells of some patients, they noticed that the PTPN2 gene was lost, causing proliferation of the cancerous cells. In addition, PTPN2 was identified as a negative regulator of the activity of a specific kinase. The study provides genetic and functional evidence for a tumor suppressor role of PTPN2.

Beyond the specific findings for T-ALL, this study provides new insights into cancer development in general. Errors in kinases and phosphatases, enzymes able to switch specific cellular functions on of and off, have long been known as potential causes of cancer, but this study now shows that when these errors occur together, the carcinogenic effects can reinforce each other. Furthermore, they can make the cells more resistant to kinase inhibitors, therapeutic substances currently used for cancer treatment.

Related Stories

Recommended for you

Alternative splicing, an important mechanism for cancer

September 22, 2017
Cancer, which is one of the leading causes of death worldwide, arises from the disruption of essential mechanisms of the normal cell life cycle, such as replication control, DNA repair and cell death. Thanks to the advances ...

'Labyrinth' chip could help monitor aggressive cancer stem cells

September 21, 2017
Inspired by the Labyrinth of Greek mythology, a new chip etched with fluid channels sends blood samples through a hydrodynamic maze to separate out rare circulating cancer cells into a relatively clean stream for analysis. ...

Drug combination may improve impact of immunotherapy in head and neck cancer

September 21, 2017
Checkpoint inhibitor-based immunotherapy has been shown to be very effective in recurrent and metastatic head and neck cancer but only in a minority of patients. University of California San Diego School of Medicine researchers ...

Whole food diet may help prevent colon cancer, other chronic conditions

September 21, 2017
A diet that includes plenty of colorful vegetables and fruits may contain compounds that can stop colon cancer and inflammatory bowel diseases in pigs, according to an international team of researchers. Understanding how ...

New kinase detection method helps identify targets for developing cancer drugs

September 21, 2017
Purdue University researchers have developed a high-throughput method for matching kinases to the proteins they phosphorylate, speeding the ability to identify multiple potential cancer drug targets.

Poliovirus therapy induces immune responses against cancer

September 20, 2017
An investigational therapy using modified poliovirus to attack cancer tumors appears to unleash the body's own capacity to fight malignancies by activating an inflammation process that counter's the ability of cancer cells ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.