Gladstone scientist converts human skin cells into functional brain cells

July 28, 2011, Gladstone Institutes

A scientist at the Gladstone Institutes has discovered a novel way to convert human skin cells into brain cells, advancing medicine and human health by offering new hope for regenerative medicine and personalized drug discovery and development.

In a paper being published online today in the scientific journal Cell Stem Cell, Sheng Ding, PhD, reveals efficient and robust methods for transforming adult into neurons that are capable of transmitting , marking one of the first documented experiments for transforming an adult human's skin cells into functioning .

"This work could have important ramifications for patients and families who suffer at the hands of neurodegenerative diseases such Alzheimer's, Parkinson's and Huntington's disease," said Lennart Mucke, MD, who directs at Gladstone. "Dr. Ding's latest research offers new hope for the process of developing medications for these diseases, as well as for the possibility of cell-replacement therapy to reduce the trauma of millions of people affected by these devastating and irreversible conditions."

The work was done in collaboration with Stuart Lipton, M.D., Ph.D., who directs the Del E. Webb Neuroscience, Aging and Center at Sanford-Burnham Medical Research Institute. Dr. Ding, one of the world's leading chemical biologists in stem-cell science, earlier this year joined Gladstone and the faculty at the University of California San Francisco (UCSF), as a professor of . Gladstone, which is affiliated with UCSF, is a leading and independent biomedical-research organization that is using stem-cell research to advance its work in its three major areas of focus: cardiovascular disease, neurodegenerative disease and .

Dr. Ding's work builds on the cell-reprogramming work of another Gladstone scientist, Senior Investigator Shinya Yamanaka, MD, PhD. Dr. Yamanaka's 2006 discovery of a way to turn adult skin cells into cells that act like embryonic has radically advanced the fields of cell biology and stem-cell research.

Embryonic stem cells—"pluripotent" cells that can develop into any type of cell in the human body—hold tremendous promise for regenerative medicine, in which damaged organs and tissues can be replaced or repaired. Many in the science community consider the use of stem cells to be key to the future treatment and eradication of a number of diseases, including heart disease and diabetes. But the use of embryonic stem cells is controversial—which is one reason why Dr. Yamanaka's discovery of an alternate way to obtain human stem cells, without the use of embryos, is so important.

Dr. Ding's work extends Dr. Yamanaka's by offering still another method for avoiding the use of embryonic stem cells and creating an entirely new platform for fundamental studies of human disease. Rather than using models made in yeast, flies or mice for disease research, all cell-reprogramming technology allows human brain, heart and other cells to be created from the skin cells of patients with a specific disease. The new cells created from the skin cells contain a complete set of the genes that resulted in that disease—representing the potential of a far-superior human model for studying illnesses, drugs and other treatments. In the future, such reprogrammed skin cells could be used to test both drug safety and efficacy for an individual patient with, for example, Alzheimer's disease.

"This technology should allow us to very rapidly model in a dish by making nerve cells from individual patients in just a matter of days—rather than the months required previously," said Dr. Lipton.

In the experiments being reported today, Dr. Ding used two genes and a microRNA to convert a skin sample from a 55-year-old woman directly into brain cells. (MicroRNAs are tiny strands of genetic material that regulate almost every process in every cell of the body.) The cells created by Dr. Ding's experiments exchanged the electrical impulses necessary for brain cells to communicate things such as thoughts and emotions. Using microRNA to reprogram cells is a safer and more efficient way than using the more common gene-modification approach. In ensuing experiments, Dr. Ding hopes to rely only on microRNAs and pharmaceutical compounds to convert skin cells to brain cells, which should lead to more efficient generation of cells for testing and regenerative purposes.

"This will help us avoid any genome modifications," said Dr. Ding. "These cells are not ready yet for transplantation. But this work removes some of the major technical hurdles to using reprogrammed cells to create transplant-ready for a host of diseases."

Dr. Ding is a senior investigator at the Gladstone Institute of Cardiovascular Disease and a UCSF professor of pharmaceutical chemistry. Dr. Ding, who performed the work described in this paper at The Scripps Research Institute, has pioneered the development and application of innovative chemical approaches to stem-cell biology and regeneration.

Related Stories

Recommended for you

Miles Davis is not Mozart: The brains of jazz and classical pianists work differently

January 16, 2018
Keith Jarret, world-famous jazz pianist, once answered in an interview when asked if he would ever be interested in doing a concert where he would play both jazz and classical music: "No, that's hilarious. [...] It's like ...

Brain zaps may help curb tics of Tourette syndrome

January 16, 2018
Electric zaps can help rewire the brains of Tourette syndrome patients, effectively reducing their uncontrollable vocal and motor tics, a new study shows.

A 'touching sight': How babies' brains process touch builds foundations for learning

January 16, 2018
Touch is the first of the five senses to develop, yet scientists know far less about the baby's brain response to touch than to, say, the sight of mom's face, or the sound of her voice.

Researchers identify protein involved in cocaine addiction

January 16, 2018
Mount Sinai researchers have identified a protein produced by the immune system—granulocyte-colony stimulating factor (G-CSF)—that could be responsible for the development of cocaine addiction.

New study reveals why some people are more creative than others

January 16, 2018
Creativity is often defined as the ability to come up with new and useful ideas. Like intelligence, it can be considered a trait that everyone – not just creative "geniuses" like Picasso and Steve Jobs – possesses in ...

Neuroscientists suggest a model for how we gain volitional control of what we hold in our minds

January 16, 2018
Working memory is a sort of "mental sketchpad" that allows you to accomplish everyday tasks such as calling in your hungry family's takeout order and finding the bathroom you were just told "will be the third door on the ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.