How unchecked alarms can spark autoimmune disease

November 29, 2011 By Carly Hodes, Cornell University
A neutrophil (yellow), the most abundant white blood cell type and the first line of defense against invading microbes, engulfs Bacillus anthracis (orange), the agent of anthrax. The bacteria break down, releasing DNA that triggers an immune response. Electron micrograph scan by Volker Brinkmann

(Medical Xpress) -- One in five Americans suffers from autoimmune disease, in which the immune system goes off-track and attacks the body's own cells. Cornell researchers have identified a signaling mechanism in immune-system cells that may contribute to this mistake, opening the door for possible new therapies for autoimmune diseases such as lupus and arthritis.

Cynthia Leifer, assistant professor of microbiology and immunology in the College of Veterinary Medicine, and colleagues described the mechanism in the August issue of the European . The problem lies in what are called innate immune cells, the first responders to infection.

"Innate immune cells have internal watchdogs called TLR-9 that set off alarms whenever they encounter invaders," said Leifer. "They look for general classifying patterns [in DNA] to determine whether something is a virus, bacterium, protozoan, or part of self."

However, some of these patterns exist both in invading organisms and the body's own cells, so mistakes can arise.

"We are mapping the critical regulatory mechanisms that keep these receptors from responding to self-DNA so that we can know if and how they predispose people to when they fail," Leifer said.

Innate immune cells engulf things that look dangerous, tear them open, and release their components, including DNA. When TLR-9 receptors see DNA that identifies , they send a signal to fire up more immune-system activity, including inflammation and the creation of antibodies. But before a receptor can work, enzymes in the cell must prepare it by chopping off part of the and leaving a part that can bind to microbe DNA.

From there, Leifer believes it's a numbers game. If too many receptors are prepared, they may respond to the small amount of self-DNA that makes its way into , triggering an . So the immune cell has a , an enzyme pathway that cuts prepared receptors in a second place.

Working with cells in culture, Leifer identified this second chopping event, which cuts TLR-9 at a different site. This produces a molecule that binds to DNA, blocking it from reaching the prepared receptors, and does not send a signal.

"People without have the right balance of these two chopping events," Leifer said. "Our studies suggest that people with a propensity for these diseases might have a defect in this pathway that allows more prepared receptors to signal for immune responses. This may be a potential target for therapies designed to help quiet those alarms."

A second but interrelated problem Leifer has tackled involves how TLR-9 moves through an immune cell from the placewhere it is created to its working site. In earlier work she described the protein sequences in TLR-9 that act as address labels guiding where the receptor travels.

"We think they're interrelated because if you don't travel properly you don't get chopped properly," she said. "If TLR-9 ends up in the wrong place at the wrong time, it can sound a false alarm.

Leifer's research is supported by the National Institutes of Health.

Explore further: Discovery could change the way doctors treat patients with cancer and autoimmune diseases

Related Stories

Discovery could change the way doctors treat patients with cancer and autoimmune diseases

April 27, 2011
Researchers in the Faculty of Medicine & Dentistry at the University of Alberta have made an important discovery that provides a new understanding of how our immune system "learns" not to attack our own body, and this could ...

Recommended for you

Researchers devise decoy molecule to block pain where it starts

January 16, 2018
For anyone who has accidentally injured themselves, Dr. Zachary Campbell not only sympathizes, he's developing new ways to blunt pain.

Scientists unleash power of genetic data to identify disease risk

January 16, 2018
Massive banks of genetic information are being harnessed to shed new light on modifiable health risks that underlie common diseases.

Blood-vessel-on-a-chip provides insight into new anti-inflammatory drug candidate

January 15, 2018
One of the most important and fraught processes in the human body is inflammation. Inflammatory responses to injury or disease are crucial for recruiting the immune system to help the body heal, but inflammation can also ...

Molecule produced by fat cells reduces obesity and diabetes in mice

January 15, 2018
UC San Francisco researchers have discovered a new biological pathway in fat cells that could explain why some people with obesity are at high risk for metabolic diseases such as type 2 diabetes. The new findings—demonstrated ...

Obese fat becomes inflamed and scarred, which may make weight loss harder

January 12, 2018
The fat of obese people becomes distressed, scarred and inflamed, which can make weight loss more difficult, research at the University of Exeter has found.

Optimized human peptide found to be an effective antibacterial agent

January 11, 2018
A team of researchers in the Netherlands has developed an effective antibacterial ointment based on an optimized human peptide. In their paper published in the journal Science Translational Medicine, the group describes developing ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.