Fusion plasma research helps neurologists to hear above the noise

January 10, 2012

Fusion plasma researchers at the University of Warwick have teamed up with Cambridge neuroscientists to apply their expertise developed to study inaccessible fusion plasmas in order to significantly improve the understanding of the data obtained from non-invasive study of the fast dynamics of networks in the human brain.

Unless they undertake , are limited to external sensing when studying live brains. One key method the researchers turn to is (MEG) in which sensors measure the tiny magnetic fields outside the head that are generated as our brains think. In order to get a 'functional blueprint' of how our brains work, researchers want to use these measurements to pinpoint which different regions of the brain appear to be synchronised with each other as a person does different tasks. In this study, researchers were interested in how the brain reacts to surprise. Healthy volunteers were asked to listen to a series of 'beeps', some of which were regular and repetitive and some of which were different and out of sequence, and researchers 'listened in' to their using state-of-the-art MEG setup at the MRC Cognition and Brain Sciences Unit in Cambridge.

MEG has great potential as a useful - it is non-invasive and much more comfortable for the subject than other techniques - but the neuromagnetic signal varies fast, the signal to noise ratio is low meaning that such data are challenging to understand.

These challenges - extracting signal from noise in observations that can only be made from external sensors - are also often faced in magnetically confined plasmas for fusion. researchers at the University of Warwick have developed methods to deal with data analysis problems similar to those faced by the neuroscientists. The Warwick researchers have now shared these methods and with their neuroscientific colleagues in Cambridge and Birkbeck. Together they have been able to carry out new studies that are already beginning to provide new insights into the brain's network - they have made the first map of the dynamically changing network of the brain as it deals with the 'surprise' of the different sounds. They have just published the first results of this work in the Journal of Neurophysiology in the paper "Fast reconfiguration of high frequency brain networks in response to surprising changes in auditory input." The two lead authors on the paper were Dr Ruth Nicol and Professor Sandra Chapman from Centre for Fusion, Space and Astrophysics, in the University of Warwick's Department of Physics who worked closely with Professor Ed Bullmore and his team in Cambridge University's Brain Mapping Unit at Addenbrookes and other neuroscientists in Cambridge and Birkbeck.

Professor Sandra Chapman from the University of Warwick said:

"You never know when knowledge from one field can help out in another. It is very satisfying to find that ideas we have developed to understand remote observations of the 'space weather' of the earth's aurora and magnetic fields, and the dynamics of magnetically confined fusion plasmas - which will one day provide a source of domestic power- can also help us listen in on the workings of the human brain.''

Professor Ed Bullmore said:

"The complexity of biological systems like the human brain demands an interdisciplinary approach to data analysis where physicists can combine their quantitative skills with the domain expertise of neuroscientists to achieve greater understanding than either group could achieve alone. This study provides exciting new insight into how human brain networks are rapidly reconfigured in response to unpredictable stimuli and also provides a great example of the value added by scientists working together in innovative collaborations to address some of the key challenges of neuroscience."

The researchers have begun to get some intriguing new insights. When test subjects heard the predictable standard tone the researchers observed that the brain tends to synchronise locally – active connections were mostly between neighbouring regions of the brain. However when the unexpected surprising tones were heard the researchers were able to observe how the dynamically reconfigures its connections - the percentage of long range or global connections used by the brain for communication between widely separated regions increases and this happens near-instantly, in just 80 milliseconds. It is likely that the has evolved to be efficient - to use the least energy possible in performing routine tasks and so only these long range connections only emerge when they are needed- for example, to assess a surprising event in our environment.

Explore further: Scientists can now 'see' how different parts of our brain communicate

Related Stories

Scientists can now 'see' how different parts of our brain communicate

September 21, 2011
A new technique which lets scientists 'see' our brain waves at work could revolutionise our understanding of the human body’s most complex organ and help transform the lives of people suffering from schizophrenia and ...

Neuro-tweets: #hashtagging the brain (w/ video)

May 9, 2011
(Medical Xpress) -- We like to think the human brain is special, something different from other brains and information processing systems, but a Cambridge professor set out to test that assumption – by conducting a live ...

Swapping 'dance partners' in the brain is key to learning

April 19, 2011
(PhysOrg.com) -- Researchers collected brain imaging data from people performing a motor task, and then analysed this data using new computational techniques. They found evidence that the 'flexibility' of a person's brain ...

Recommended for you

Scientists discover common obesity and diabetes drug reduces rise in brain pressure

August 23, 2017
Research led by the University of Birmingham, published today in Science Translational Medicine, has discovered that a drug commonly used to treat patients with either obesity or Type II diabetes could be used as a novel ...

Use of brain-computer interface, virtual avatar could help people with gait disabilities

August 23, 2017
Researchers from the University of Houston have shown for the first time that the use of a brain-computer interface augmented with a virtual walking avatar can control gait, suggesting the protocol may help patients recover ...

Researcher working to develop new tool for non-invasive neuromodulation of human brain

August 23, 2017
A UTA researcher is developing a technology that will map and image the effects of infrared light shone on the human brain that may be able to modulate and improve brain waves and circuits at certain spots in the brain.

Physicist reports binary marker of preclinical and clinical Alzheimer's disease

August 23, 2017
A new technique shows high potential for providing a discrete, non-invasive biomarker of Alzheimer's disease (AD) at the individual level during both preclinical and clinical stages. The proposed biomarker has a large effect ...

Firing of neurons changes the cells that insulate them

August 22, 2017
Through their pattern of firing, neurons influence the behavior of the cells that upon maturation will provide insulation of neuronal axons, according to a new study publishing 22 August in the open access journal PLOS Biology ...

Activating brain region creates intense desire to use cocaine

August 22, 2017
Researchers have identified a portion of the brain that intensifies one's desire for certain rewards—in this case, mimicking addiction to cocaine.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.