Transgenic technique to 'eliminate' a specific neural circuit of the brain in primates

June 26, 2012

Japanese researchers developed a gene transfer technique that can "eliminate" a specific neural circuit in non-human primates for the first time in the world.

In the brains of humans and non-human primates, over 100 billion nerve cells build up complicated neural circuits and produce higher brain functions. When an attempt is made to perform gene therapy for like Parkinson's disease, it is necessary to specify a responsible out of many complicated circuits. Until now, however, it was difficult to introduce a target gene into this particular circuit selectively. The collaborative research group consisting of Professor Masahiko TAKADA from Primate Research Institute, Kyoto University, Professor Atsushi NAMBU from National Institute for Physiological Sciences, National Institutes of Natural Sciences, and Professor Kazuto KOBAYASHI from Fukushima Medical University School of Medicine succeeded in development of the gene transfer technique that can "eliminate"a specific neural circuit in non-human primates for the first time in the world .

They applied this technique to the basal ganglia, the brain region that is affected in movement disorders such as Parkinson's disease, and successfully eliminated a particular circuit selectively to elucidate its functional role. This technique can be applied to gene therapy for various neurological diseases in humans. This research achievement was supported by the Strategic Research Program of by MEXT of Japan, and published in the American science magazine PLoS ONE (June 25th issue electronic edition).

The research group developed a special , NeuRet-IL-2R alpha-GFP viral vector, expressing human interleukin type 2 alpha receptor, which the cell death inducer immunotoxin binds. transfected with this viral vector cause cell death by immunotoxin. First, the research group injected the viral vector into the that is a component of the basal ganglia. Then, they injected immunotoxin into the motor cortex, an area of the cerebral cortex that controls movement, and succeed in selective elimination of the "hyperdirect pathway" that is one of the major circuits connecting the motor cortex to the basal ganglia. As a result, they have discovered that neuronal excitation observed at the early stage occurs through this hyperdirect pathway when motor information derived from the cortex enters the basal ganglia.

Professors TAKADA and NAMBU expect that this gene transfer technique enables us to elucidate higher brain functions in primates and to develop primate models of various psychiatric/neurological disorders and their potential treatments including gene therapy. They think that this should provide novel advances in the field of neuroscience research that originate from Japan.

Explore further: Manipulation of a specific neural circuit buried in complicated brain networks in primates

Related Stories

Manipulation of a specific neural circuit buried in complicated brain networks in primates

June 17, 2012
A collaborative research team led by Professor Tadashi ISA from The National Institute for Physiological Sciences, The National Institutes of Natural Sciences and Fukushima Medical University and Kyoto University, developed ...

Abnormal oscillation in the brain causes motor deficits in Parkinson's disease

November 1, 2011
The research group headed by Professor Atsushi Nambu (The National Institute for Physiological Sciences) and Professor Masahiko Takada (Primate Research Institute, Kyoto University) has shown that the 'oscillatory' nature ...

Positive feedback in the developing brain

May 16, 2012
(Medical Xpress) -- When an animal is born, its early experiences help map out the still-forming connections in its brain. As neurons in sensory areas of the brain fire in response to sights, smells, and sounds, synapses ...

Recommended for you

Neurons involved in learning, memory preservation less stable, more flexible than once thought

August 17, 2017
The human brain has a region of cells responsible for linking sensory cues to actions and behaviors and cataloging the link as a memory. Cells that form these links have been deemed highly stable and fixed.

Researchers make surprising discovery about how neurons talk to each other

August 17, 2017
Researchers at the University of Pittsburgh have uncovered the mechanism by which neurons keep up with the demands of repeatedly sending signals to other neurons. The new findings, made in fruit flies and mice, challenge ...

Researchers show how particular fear memories can be erased

August 17, 2017
Researchers at the University of California, Riverside have devised a method to selectively erase particular fear memories by weakening the connections between the nerve cells (neurons) involved in forming these memories.

How we recall the past: Neuroscientists discover a brain circuit dedicated to retrieving memories

August 17, 2017
When we have a new experience, the memory of that event is stored in a neural circuit that connects several parts of the hippocampus and other brain structures. Each cluster of neurons may store different aspects of the memory, ...

Scientists identify central neural circuit for itch sensation

August 17, 2017
Itching is an unpleasant sensation associated with the desire to scratch, and the itch sensation is an important protective mechanism for animals. However, chronic itch, often seen in patients with skin and liver diseases, ...

Study uncovers specialized mouse neurons that play a unique role in pain

August 17, 2017
Researchers from the National Institutes of Health have identified a class of sensory neurons (nerve cells that electrically send and receive messages between the body and brain) that can be activated by stimuli as precise ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.