New target for treating diabetes and obesity

August 2, 2012
Sections of white fat taken from normal mice (left) and from mice without an enzyme called fatty acid synthase (FAS) in their fat cells (right). Mice without FAS can eat a high-fat diet without becoming obese. Credit: Semenkovich lab

Researchers at Washington University School of Medicine in St. Louis have identified a potential target for treating diabetes and obesity.

Studying mice, they found that when the was disabled, the animals became more sensitive to and were less likely to get even when they ate a high-fat diet that caused their littermates to become obese.

The findings are published online in the journal .

The researchers studied how the body manufactures fat from dietary sources such as carbohydrates. That process requires an enzyme called fatty acid synthase (FAS). Mice engineered so that they don't make FAS in their can eat a high-fat without becoming obese.

"Mice without FAS were significantly more resistant to obesity than their wild-type littermates," says first author Irfan J. Lodhi, PhD. "And it wasn't because they ate less. The mice ate just as much , but they metabolized more of the fat and released it as heat."

To understand why that happened, Lodhi, a research instructor in medicine, analyzed their fat cells. Mice have two types of fat: white fat and brown fat. White fat stores excess calories and contributes to obesity. Brown fat helps burn calories and protects against obesity.

Researchers at Washington University School of Medicine in St. Louis have identified a potential target for treating diabetes and obesity. They discovered that when a particular protein is disabled in mice, they get more sensitive to insulin and less likely to become fat, even when they eat a high-fat diet. Credit: Washington University BioMed Radio

In mice genetically blocked from making fatty acid synthase in fat cells, Lodhi and his colleagues noticed that the animals' white fat was transformed into tissue that resembled brown fat.

"These cells are 'brite' cells, brown fat found where white fat cells should be," Lodhi says. "They had the of brown fat cells and acted like brown fat cells. Because the mice were resistant to obesity, it appears that fatty acid synthase may control a switch between white fat and brown fat. When we removed FAS from the equation, white fat transformed into brite cells that burned more energy."

Determining whether humans also have brown fat has been somewhat controversial throughout the years, but recent studies elsewhere have confirmed that people have it.

"It definitely exists, and perhaps the next strategy we'll use for treating people with diabetes and obesity will be to try to reverse their problems by activating these brown fat cells," says senior investigator Clay F. Semenkovich, MD.

Semenkovich, the Herbert S. Gasser Professor of Medicine, professor of cell biology and physiology and director of the Division of Endocrinology, Metabolism and Lipid Research, says the new work is exciting because FAS provides a target that may be able to activate cells to treat obesity and diabetes. But even better, he says it may be possible to target a protein downstream from FAS to lower the risk for potential side effects from the therapy.

That is possible because the scientists learned that the FAS pathway involves a family of proteins known as the PPARs (peroxisome proliferator-activated receptors). PPARs are important in lipid metabolism. One of them, PPAR-alpha, helps burn fat, but the related protein, PPAR-gamma manufactures fat and helps store it.

Lodhi and Semenkovich noticed that in mice without FAS in their fat cells, activity of PPAR-alpha (the fat burner) was increased, while PPAR-gamma (the fat builder) activity decreased.

A protein called PexRAP (Peroxisomal Reductase Activating PPAR-gamma) turned out to be a downstream mediator of the effects of FAS and a key regulator of the PPAR-gamma, fat-storing pathway. When the researchers blocked PexRAP in fat cells in mice, they also interfered with the manufacture and buildup of fat.

"There was decreased fat when we blocked PexRAP," Lodhi says. "Those mice also had improved glucose metabolism, so we think that inhibiting either fatty acid synthase or PexRAP might be good strategies for treating obesity and diabetes."

Several pharmaceutical companies are working on FAS inhibitors. Meanwhile, the discovery that inhibiting PexRAP also makes the animals less obese and less diabetic has convinced the Washington University researchers to continue those studies.

"Because PexRAP is downstream, it theoretically might cause fewer side effects, but nobody knows what role the protein might play in different tissues in the body," Semenkovich says. "We need to conduct more experiments with the goal that we may be able to move into some sort of clinical trials relatively soon. It's very important to find new treatments for and because these disorders aren't just an inconvenience, both can be lethal."

Explore further: Calorie-burning brown fat is a potential obesity treatment, researchers say

More information: Lodhi IJ, Yin L, Jensen-Urstad APL, Funai K, Coleman T, Baird JH, El Ramahi MK, Razani B, Song H, Fu-Hsu F, Turk J, Semenkovich CF. Inhibiting adipose tissue lipogenesis reprograms thermogenesis and PPARγ activation to decrease diet-induced obesity. Cell Metabolism, vol. 16 (2), Aug. 8, 2012.

Related Stories

Calorie-burning brown fat is a potential obesity treatment, researchers say

June 6, 2011
A new study suggests that many adults have large amounts of brown fat, the "good" fat that burns calories to keep us warm, and that it may be possible to make even more of this tissue.

A new candidate pathway for treating visceral obesity

May 6, 2012
Brown seems to be the color of choice when it comes to the types of fat cells in our bodies. Brown fat expends energy, while its counterpart, white fat stores it. The danger in white fat cells, along with the increased risk ...

Findings in mice have potential to curb obesity, Type 2 diabetes

July 5, 2011
Scientists at the National Institutes of Health have uncovered a pathway in mice that allows white fat – a contributor to obesity and type 2 diabetes – to burn calories in a way that's normally found in brown fat ...

Teaching fat cells to burn calories

March 8, 2012
(Medical Xpress) -- In the war against obesity, one’s own fat cells may seem an unlikely ally, but new research from the University of California, San Francisco (UCSF) suggests ordinary fat cells can be reengineered ...

Study finds mechanism that turns white fat into energy-burning brown fat

August 2, 2012
Columbia University Medical Center (CUMC) researchers have identified a mechanism that can give energy-storing white fat some of the beneficial characteristics of energy-burning brown fat. The findings, based on studies of ...

Recommended for you

New breast cell types discovered by multidisciplinary research team

November 20, 2017
A joint effort by breast cancer researchers and bioinformaticians has provided new insights into the molecular changes that drive breast development.

Brain cell advance brings hope for Creutzfeldt-Jakob disease

November 20, 2017
Scientists have developed a new system to study Creutzfeldt-Jakob disease in the laboratory, paving the way for research to find treatments for the fatal brain disorder.

Hibernating ground squirrels provide clues to new stroke treatments

November 17, 2017
In the fight against brain damage caused by stroke, researchers have turned to an unlikely source of inspiration: hibernating ground squirrels.

Molecular guardian defends cells, organs against excess cholesterol

November 16, 2017
A team of researchers at the Harvard T. H. Chan School of Public Health has illuminated a critical player in cholesterol metabolism that acts as a molecular guardian in cells to help maintain cholesterol levels within a safe, ...

Prototype ear plug sensor could improve monitoring of vital signs

November 16, 2017
Scientists have developed a sensor that fits in the ear, with the aim of monitoring the heart, brain and lungs functions for health and fitness.

Ancient enzyme could boost power of liquid biopsies to detect and profile cancers

November 16, 2017
Scientists are developing a set of medical tests called liquid biopsies that can rapidly detect the presence of cancers, infectious diseases and other conditions from only a small blood sample. Researchers at The University ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.