Scientists identify a critical tumor suppressor for cancer

August 2, 2012

Scientists from the Florida campus of The Scripps Research Institute have identified a protein that impairs the development and maintenance of lymphoma (cancer of the lymph nodes), but is repressed during the initial stages of the disease, allowing for rapid tumor growth.

While the study, published in the August 3, 2012 edition of the journal Cell, largely focuses on the role of this new in induced by Myc oncoproteins (the cancer-promoting products of Myc oncogenes), the authors show this circuit is apparently operational in all human tumors with MYC involvement, which is more than half of all human tumor types.

"This opens a new therapeutic avenue to exploit for cancers with Myc involvement—including relapsed metastatic tumors and refractory tumors, those that have not responded to treatment," said John Cleveland, a Scripps Research professor and chair of the Department of Cancer Biology, who led the study.

The Myc family of oncoproteins (c-Myc, N-Myc, and L-Myc) regulate critical pathways that contribute to tumors; c-Myc expression, which is activated in human Burkitt lymphoma, is sufficient to induce the growth of several tumor types in animal models.

In the new study, the scientists focused on precancerous and malignant Myc-expressing B cells, part of the immune system affected in human lymphoma. Using transgenic animal models, Cleveland and his team, led by the efforts of senior postdoctoral fellow Robert Rounbehler, showed that Myc-directed repression of a called tristetraprolin (TTP/ZFP36) was important for both the development and maintenance of cancer. The suppression of TTP is a hallmark of human cancers with MYC involvement, Cleveland noted.

The scientists' results showed that overriding this pathway by forced expression of TTP more than doubled the lifespan of Myc transgenic mice. Strikingly, Rounbehler discovered that re-introduction of TTP into Myc-driven lymphoma totally disabled these tumors, indicating an important therapeutic target.

The authors showed that Myc regulates hundreds of genes that contain adenylate-uridylate-rich elements (AU-rich elements), which play an important role in RNA stability and are found in many messenger RNAs (mRNAs) that code for oncogenes, nuclear transcription factors, and cytokines. AU-rich elements direct the mRNA for degradation; they are thought to be vital for controlling expression during cell growth.

"Myc regulates the expression of select AU-binding proteins to control the destruction of certain mRNAs," Cleveland said. "Also, our study strongly suggests that other AU-binding proteins may also, in fact, function as suppressors in other cancers."

Explore further: Lymphoma therapy could deliver a double punch

More information: "Tristetraprolin is a Tumor Suppressor That Impairs Myc-Induced Lymphoma and Abolishes the Malignant State," Cell.

Related Stories

Lymphoma therapy could deliver a double punch

April 30, 2012
B cell lymphomas are a group of cancers of that originate in lymphoid tissue from B cells, the specialized immune cell type that produces antibodies. The development of B cell lymphoma is associated with several known genetic ...

Protein may represent a switch to turn off B cell lymphoma

May 7, 2012
Researchers studying the molecular signals that drive a specific type of lymphoma have discovered a key biological pathway leading to this type of cancer. Cancerous cells have been described as being "addicted" to certain ...

Breaking the backbone of triple-negative breast cancers

March 19, 2012
Putting the brakes on an abundant growth-promoting protein causes breast tumors to regress, according to a study published on March 19th in the Journal of Experimental Medicine.

Recommended for you

New therapeutic approach for difficult-to-treat subtype of ovarian cancer identified

July 24, 2017
A potential new therapeutic strategy for a difficult-to-treat form of ovarian cancer has been discovered by Wistar scientists. The findings were published online in Nature Cell Biology.

Anti-cancer chemotherapeutic agent inhibits glioblastoma growth and radiation resistance

July 24, 2017
Glioblastoma is a primary brain tumor with dismal survival rates, even after treatment with surgery, chemotherapy and radiation. A small subpopulation of tumor cells—glioma stem cells—is responsible for glioblastoma's ...

Immune cells the missing ingredient in new bladder cancer treatment

July 24, 2017
New research offers a possible explanation for why a new type of cancer treatment hasn't been working as expected against bladder cancer.

No dye: Cancer patients' gray hair darkened on immune drugs

July 21, 2017
Cancer patients' gray hair unexpectedly turned youthfully dark while taking novel drugs, and it has doctors scratching their heads.

Shooting the achilles heel of nervous system cancers

July 20, 2017
Virtually all cancer treatments used today also damage normal cells, causing the toxic side effects associated with cancer treatment. A cooperative research team led by researchers at Dartmouth's Norris Cotton Cancer Center ...

Immune-cell numbers predict response to combination immunotherapy in melanoma

July 20, 2017
Whether a melanoma patient will better respond to a single immunotherapy drug or two in combination depends on the abundance of certain white blood cells within their tumors, according to a new study conducted by UC San Francisco ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.