Researchers engineer cartilage from pluripotent stem cells

October 29, 2012

A team of Duke Medicine researchers has engineered cartilage from induced pluripotent stem cells that were successfully grown and sorted for use in tissue repair and studies into cartilage injury and osteoarthritis.

The finding is reported online Oct. 29, 2012, in the journal the , and suggests that induced pluripotent stem cells, or iPSCs, may be a viable source of patient-specific articular .

"This technique of creating induced – an achievement honored with this year's Nobel Prize in medicine for Shimya Yamanaka of Kyoto University - is a way to take adult stem cells and convert them so they have the properties of embryonic stem cells," said Farshid Guilak, PhD, Laszlo Ormandy Professor of Orthopaedic Surgery at Duke and senior author of the study.

"Adult stems cells are limited in what they can do, and have ethical issues," Guilak said. "What this research shows in a mouse model is the ability to create an unlimited supply of that can turn into any type of tissue – in this case cartilage, which has no ability to regenerate by itself."

Articular cartilage is the shock absorber tissue in joints that makes it possible to walk, climb stairs, jump and perform daily activities without pain. But ordinary wear-and-tear or an injury can diminish its effectiveness and progress to osteoarthritis. Because has a poor capacity for repair, damage and osteoarthritis are leading causes of impairment in older people and often requires joint replacement.

In their study, the Duke researchers, led by Brian O. Diekman, PhD., a post-doctoral associate in orthopaedic surgery, aimed to apply recent technologies that have made iPSCs a promising alternative to other tissue engineering techniques, which use derived from the bone marrow or fat tissue.

One challenge the researchers sought to overcome was developing a uniformly differentiated population of chondrocytes, cells that produce collagen and maintain cartilage, while culling other types of cells that the powerful iPSCs could form.

To achieve that, the researchers induced chondrocyte differentiation in iPSCs derived from adult mouse fibroblasts by treating cultures with a growth medium. They also tailored the cells to express green fluorescent protein only when the cells successfully became chondrocytes. As the iPSCs differentiated, the chondrocyte cells that glowed with the green fluorescent protein were easily identified and sorted from the undesired cells.

The tailored cells also produced greater amounts of cartilage components, including collagen, and showed the characteristic stiffness of native cartilage, suggesting they would work well repairing cartilage defects in the body.

"This was a multi-step approach, with the initial differentiation, then sorting, and then proceeding to make the tissue," Diekman said. "What this shows is that iPSCs can be used to make high quality cartilage, either for replacement tissue or as a way to study disease and potential treatments."

Diekman and Guilak said the next phase of the research will be to use human iPSCs to test the cartilage-growing technique.

"The advantage of this technique is that we can grow a continuous supply of cartilage in a dish," Guilak said. "In addition to cell-based therapies, iPSC technology can also provide patient-specific cell and tissue models that could be used to screen for drugs to treat osteoarthritis, which right now does not have a cure or an effective therapy to inhibit loss."

Explore further: Repairing cartilage with fat: Problems and potential solutions

Related Stories

Repairing cartilage with fat: Problems and potential solutions

August 24, 2012
Stem cells isolated from fat are being considered as an option for treating tissue damage and diseases because of their accessibility and lack of rejection. New research published in BioMed Central's open access journal Stem ...

Recommended for you

Make way for hemoglobin

August 18, 2017
Every cell in the body, whether skin or muscle or brain, starts out as a generic cell that acquires its unique characteristics after undergoing a process of specialization. Nowhere is this process more dramatic than it is ...

Two-step process leads to cell immortalization and cancer

August 17, 2017
A mutation that helps make cells immortal is critical to the development of a tumor, but new research at the University of California, Berkeley suggests that becoming immortal is a more complicated process than originally ...

Female mouse embryos actively remove male reproductive systems

August 17, 2017
A protein called COUP-TFII determines whether a mouse embryo develops a male reproductive tract, according to researchers at the National Institutes of Health and their colleagues at Baylor College of Medicine, Houston. The ...

New Pathology Atlas maps genes in cancer to accelerate progress in personalized medicine

August 17, 2017
A new Pathology Atlas is launched today with an analysis of all human genes in all major cancers showing the consequence of their corresponding protein levels for overall patient survival. The difference in expression patterns ...

New technique overcomes genetic cause of infertility

August 17, 2017
Scientists have created healthy offspring from genetically infertile male mice, offering a potential new approach to tackling a common genetic cause of human infertility.

Inhibiting a protein found to reduce progression of Alzheimer's and ALS in mice

August 17, 2017
(Medical Xpress)—A team of researchers with Genetech Inc. and universities in Hamburg and San Francisco has found that inhibiting the creation of a protein leads to a reduction in the progression of Alzheimer's disease ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.