Researchers halt autoimmune disease myasthenia gravis in mice

October 1, 2012

Working with mice, Johns Hopkins researchers say they have developed a gene-based therapy to stop the rodent equivalent of the autoimmune disease myasthenia gravis by specifically targeting the destructive immune response the disorder triggers in the body.

The technique, the result of more than 10 years of work, holds promise for a highly specific therapy for the progressively debilitating muscle-weakening human disorder, one that avoids the need for long-term, systemic immunosuppressant drugs that control the disease but may create unwanted side effects.

The research, if replicated in humans, could be a big leap in treating not only myasthenia gravis, but also other , the researchers say.

"To treat , we normally give drugs that suppress not only the specific antibodies and we want to inhibit, but that also broadly interfere with other functions of the immune system," says Daniel B. Drachman, M.D., a professor of neurology and neuroscience at the Johns Hopkins University School of Medicine and leader of the study published this month in the Journal of Neuroimmunology. "Our goal was to suppress only the abnormal response, without damaging the remainder of the immune system, and that's what we did in these mice."

A healthy immune system has the amazing ability to distinguish between the body's own cells, recognized as "self," and foreign proteins and other substances—including germs and tumors—to fight infections, cancer and other diseases. The body's immune defenses normally coexist peacefully with cells that carry distinctive "self" marker molecules. But when immune defenders encounter foreign molecules, they quickly launch an attack. Autoimmune disorders occur when the immune system makes a mistake, in which it confuses "self" with something foreign, and then launches an attack by and/or to seek out and damage the body's own cells.

Drachman, one of the world's leading authorities on myasthenia gravis and other neurologic autoimmune disorders, and his colleagues say they have found a way to create a "guided missile" approach as opposed to the "carpet bombing" of overall immunosuppression. Essentially, Drachman says, the method eliminates the cells of the immune system that are involved in the attack against self and leaves other cells alone.

The research team created the guided missiles by genetically engineering dendritic cells, which are the immune cells that specialize in presenting antigens to the immune system's T-cells. They extracted dendritic cells from mice with myasthenia gravis, purified them and inserted genes which direct these dendritic cells to target the auto-aggressive immune cells, and destroy them using a "warhead" known as Fas ligand. Then they injected back into the mice the genetically engineered cells, which homed in on the immune system's faulty T-cells. The newly introduced "guided missiles" then sought out and bound themselves to those T-cells, causing apoptosis, or cellular suicide, which halted the autoimmune attack before it could gain traction.

"This way, the autoantibodies were specifically reduced, a key step in treating myasthenia gravis," Drachman says.

The therapy dramatically reduced the autoantibodies responsible for myasthenia gravis, without affecting other responses of the . However, the study was not carried out long enough to determine whether the mice were permanently cured of their disease. Theoretically, a similar approach to treatment could be translated to patients with myasthenia gravis, but so far it has not yet been tested in humans, and it is not yet known whether repeated courses of the therapy might be needed.

Myasthenia gravis, a condition found in an estimated one to seven per 10,000 people worldwide, occurs in individuals who appear to be genetically predisposed, though it is unclear exactly what triggers the disease. Overall, however, an estimated 80 to 100 known autoimmune disorders affect more than 23 million Americans.

Patients who take are more susceptible to infections and even some forms of cancer.

Explore further: Moving towards a better treatment for autoimmune diabetes

Related Stories

Moving towards a better treatment for autoimmune diabetes

April 9, 2012
Insulin is required for the regulation of blood sugar levels. In type I diabetes, the cells that produce insulin are destroyed by the immune system.

Skin sentry cells promote distinct immune responses

July 21, 2011
A new study reveals that just as different soldiers in the field have different jobs, subsets of a type of immune cell that polices the barriers of the body can promote unique and opposite immune responses against the same ...

Immune cell death safeguards against autoimmune disease

September 6, 2012
Researchers at the Walter and Eliza Hall Institute have discovered that a pair of molecules work together to kill so-called 'self-reactive' immune cells that are programmed to attack the body's own organs. The finding is ...

Discovery could change the way doctors treat patients with cancer and autoimmune diseases

April 27, 2011
Researchers in the Faculty of Medicine & Dentistry at the University of Alberta have made an important discovery that provides a new understanding of how our immune system "learns" not to attack our own body, and this could ...

Discovery of immune cells that protect against multiple sclerosis offers hope for new treatment

August 16, 2012
In multiple sclerosis, the immune system attacks nerves in the brain and spinal cord, causing movement problems, muscle weakness and loss of vision. Immune cells called dendritic cells, which were previously thought to contribute ...

Recommended for you

Discovery of potent parasite protein may lead to new therapeutic options for inflammatory bowel conditions

November 24, 2017
A single protein from a worm parasite may one day offer new therapeutic options for treating inflammatory bowel diseases like Crohn's or Ulcerative Colitis, that avoid the potentially serious side effects of current immunosuppressant ...

Druglike molecules produced by gut bacteria can affect gut, immune health

November 23, 2017
Stanford researchers found that manipulating the gut microbe Clostridium sporogenes changed levels of molecules in the bloodstreams of mice and, in turn, affected their health.

Study explores whole-body immunity

November 21, 2017
Over the next few months, millions of people will receive vaccinations in the hope of staving off the flu—and the fever, pain, and congestion that come with it.

Drug could cut transplant rejection

November 21, 2017
A diabetes drug currently undergoing development could be repurposed to help end transplant rejection, without the side-effects of current immunosuppressive drugs, according to new research by Queen Mary University of London ...

Atopic eczema—one size does not fit all

November 21, 2017
Researchers from the UK and Netherlands have identified five distinct subgroups of eczema, a finding that helps explain how the condition can affect people at different stages of their lives.

Breast milk found to protect against food allergy

November 20, 2017
Eating allergenic foods during pregnancy can protect your child from food allergies, especially if you breastfeed, suggests new research from Boston Children's Hospital. The study, published online today in the Journal of ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.