An immunosuppressive drug could delay the onset of neurodegenerative diseases

October 15, 2012

Rapamycin, a drug used to prevent rejection in transplants, could delay the onset of neurodegenerative diseases such as Alzheimer's and Parkinson's. This is the main conclusion of a study published in the Nature in which has collaborated the researcher Isidro Ferrer, head of the group of Neuropathology at the Bellvitge Biomedical Research Institute (IDIBELL) and the Bellvitge University Hospital and Full Professor of Pathological Anatomy at the University of Barcelona. The research was led by researchers from the International School for Advanced Studies (SISSA) in Trieste (Italy).

The collaboration of the research group led by Dr. Ferrer with SISSA researchers began five years ago when they observed that Parkinson's patients showed a deficit in UCHL1 protein. At that time, researchers didn't know what mechanism produced this deficit. To discover it a European project was launched. It was coordinated by the Italian researchers and participated by other European research groups, including the group led by Dr. Ferrer. The project, called Dopaminet, focused on how dopaminergic neurons ( whose neurotransmitter is dopamine) are involved in Parkinson's disease.

Contrary to most common hypothesis that a encodes a protein through a molecule, the researchers found that it also works in reverse. They found a balance between the protein and its mirror protein, which is configured in reverse, and they are mutually controlled. If the protein mirror is located in the nucleus of the cell, it does not interact with the protein, while if it is in the cytoplasm, then both of them interact.

In the case of Parkinson's disease the protein UCHL1 appears reduced and also its mirror protein is localized in the nucleus, and in the cytoplasm. Thus, the researchers sought a method to extract the mirror protein from the nucleus and made it interact with the original UCHL1 protein. The authors found that rapamycin was able to extract them from the nucleus. The drug allows the two proteins, the UCHL1 and its mirror, hold together in the cytoplasm, which would correct the mistakes that occur in Parkinson's disease.

This in vitro research has allowed describing a new unknown mechanism. It is necessary that the UCHL1 mirror protein should accumulate in the nucleus and escape from the and join the UCLH1 protein. The combination of both makes the system work.

"The rapamycin can not cure Parkinson's disease, but it may delay the onset of such as Alzheimer's and Parkinson's itself. Rapamycin can protect and delay the beginning of these diseases. It can complete the treatment, but it should be combined with other existing treatments", explains Isidro Ferrer.

Anyway, it is still far its application in patients. The next step is to validate these results in animal models and study the effects of rapamycin in combination with other drugs.

Explore further: Brain variants of protein associated with Huntington's and other neurodegenerative diseases identified

More information: Claudia Carrieri, Laura Cimatti, Marta Biagioli, Anne Beugnet, Silvia Zucchelli, Stefania Fedele, Elisa Pesce,Isidre Ferrer, Licio Collavin, Claudio Santoro, Alistair R. R. Forrest, Piero Carninci, Stefano Biffo, Elia Stupka & Stefano Gustincich. Long non-coding antisense RNA controls Uchl1 translation through an embedded SINEB2 repeat. Nature. DOI: 10.1038/nature11508

Related Stories

Brain variants of protein associated with Huntington's and other neurodegenerative diseases identified

July 23, 2012
(Medical Xpress) -- A protein essential for metabolism and recently associated with neurodegenerative diseases also occurs in several brain-specific forms. This discovery emerged in the course of a research project funded ...

Finding brings scientists one step closer to Parkinson's drug

June 27, 2012
Van Andel Institute announces that researchers at Lund University in Sweden have published a study detailing how Parkinson's disease spreads through the brain. Experiments in rat models uncover a process previously used to ...

How Parkinson's disease starts and spreads

April 16, 2012
Injection of a small amount of clumped protein triggers a cascade of events leading to a Parkinson's-like disease in mice, according to an article published online this week in the Journal of Experimental Medicine.

Recommended for you

Study finds graspable objects grab attention more than images of objects do

December 15, 2017
Does having the potential to act upon an object have a unique influence on behavior and brain responses to the object? That is the question Jacqueline Snow, assistant professor of psychology at the University of Nevada, Reno, ...

Journaling inspires altruism through an attitude of gratitude

December 14, 2017
Gratitude does more than help maintain good health. New research at the University of Oregon finds that regularly noting feelings of gratitude in a journal leads to increased altruism.

Little understood cell helps mice see color

December 14, 2017
Researchers at the University of Colorado Anschutz Medical Campus have discovered that color vision in mice is far more complex than originally thought, opening the door to experiments that could potentially lead to new treatments ...

Scientists chart how brain signals connect to neurons

December 14, 2017
Scientists at Johns Hopkins have used supercomputers to create an atomic scale map that tracks how the signaling chemical glutamate binds to a neuron in the brain. The findings, say the scientists, shed light on the dynamic ...

Activating MSc glutamatergic neurons found to cause mice to eat less

December 13, 2017
(Medical Xpress)—A trio of researchers working at the State University of New York has found that artificially stimulating neurons that exist in the medial septal complex in mouse brains caused test mice to eat less. In ...

Gene mutation causes low sensitivity to pain

December 13, 2017
A UCL-led research team has identified a rare mutation that causes one family to have unusually low sensitivity to pain.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.