Prenatal intervention reduces learning deficit in mice

November 30, 2012, NIH/National Institute of Child Health and Human Development

Mice with a condition that serves as a laboratory model for Down syndrome perform better on memory and learning tasks as adults if they were treated before birth with neuroprotective peptides, according to researchers at the National Institutes of Health.

Down syndrome results when an individual receives an extra copy of . According to the , Down syndrome occurs in 1 of every 691 births. Features of Down syndrome include delays in mental and physical development and poor muscle tone. These features may vary greatly, ranging from mild to severe.

The researchers studied growth factors that are important at certain key stages of in the womb. Named for the first three amino acids making up their , NAP and SAL, are small peptides (small protein sub units) of two proteins. These two proteins enhance the ability of to receive and transmit signals, and enable them to survive. (NAP is an abbreviation for NAPVSIPQ and SALfor SALLRSIPA.)

The mice in the study had an extra copy of mouse chromosome 16, which has mouse counterparts to 55 percent of the genes on 21.The researchers treated with NAP and SAL for five days, then tested the mouse offspring at 8 to 12 months of age, comparing them to mice treated with a saline solution (placebo). Mice with the extra chromosomal material that were treated with NAP and SAL in the womb learned as well as mice that did not have the extra chromosome, and significantly faster than mice with the that were treated with .

"Our study has provided important information that may help in the understanding of Down syndrome," said senior author Catherine Y. Spong, M.D., chief of the unit on perinatal and at the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), the NIH institute where the research was conducted.

Dr. Spong collaborated with first author Maddalena Incerti, M.D., Kari Horowitz MD, Robin Roberson, Daniel Abebe, Laura Toso, M.D., and Madeline Caballero, all of the NICHD Unit on Perinatal and Developmental Neurobiology. Dr. Incerti also is affiliated with the University of Milano-Bicocca, Italy, and Dr. Horowitz now is affiliated with the University of Connecticut, Farmington.

Their findings appear online in PLOS ONE.

In an earlier study, Dr. Spong and her colleagues found that, if treated with NAP and SAL in the womb, mice with the extra copy of chromosome 16, achieved developmental milestones earlier than did mice with an extra copy of chromosome 16 that had not been treated. In that study, the researchers examined developmental milestones for sensory, motor skill, and muscle tone development in the first three weeks of life.

"In our earlier work, we showed that treating the mice during pregnancy could prevent developmental delay as assessed with milestones," Dr. Spong said. "In this study, we showed that treatment with NAP and SAL not only puts the animals on a typical developmental trajectory, it also improves their ability to learn.

For the current study, pregnant mice received injections of the two protein fragments starting eight days after conception. This is equivalent to the end of the first trimester in a human pregnancy.

The researchers tested the learning skills of the mice when the animals reached adulthood. The mice were placed in a tank of water on a clear platform. The tank had symbols on each wall that the mice could use to orient themselves. Researchers then placed the mice directly in the water and timed how long it took them to locate the platform. With repeated trials, the mice become more adept at the task and take less time to reach the platform.

Over five days of testing, the researchers found that the time spent searching for the platform decreased substantially for all groups except the mice with the extra copy of chromosome 16 that were not treated with NAP and SAL in the womb.

The research of Dr. Spong's team is part of an NIH-wide focus on Down syndrome outlined in a 2007 Down syndrome research plan. The plan highlights research priorities for the field, including establishing a Down syndrome patient registry, which was announced Oct. 25, 2012.

Explore further: Drug shows promise for Down syndrome

Related Stories

Drug shows promise for Down syndrome

February 26, 2007
Researchers at California's Stanford University report a drug known as PTZ can improve the learning and memory of lab mice with Down syndrome.

Reducing Alzheimer's-related protein in young brains improves learning in Down syndrome animal model

June 3, 2010
June 3, 2010 - Reducing a protein called beta-amyloid in young mice with a condition resembling Down syndrome improves their ability to learn, researchers at UT Southwestern Medical Center have found.

Scientist discovers why drug boosts memory in Down syndrome mice

November 24, 2011
(Medical Xpress) -- A University of Colorado School of Medicine researcher who found a drug that improved memory in mice with Down syndrome has unlocked the mystery of how it works.  

New evidence for genetic basis of autism found

October 3, 2011
Scientists at Cold Spring Harbor Laboratory (CSHL) have discovered that one of the most common genetic alterations in autism -- deletion of a 27-gene cluster on chromosome 16 -- causes autism-like features. By generating ...

Cells involved with Down syndrome restored

January 24, 2006
Johns Hopkins University scientists in Baltimore say they've restored the normal growth of nerve cells in the brains of mouse models of Down syndrome.

Understanding and treating the cognitive dysfunction of Down syndrome and Alzheimer's disease

March 1, 2012
Down syndrome (DS) is the most common genetic disorder in live born children arising as a consequence of a chromosomal abnormality. It occurs as a result of having three copies of chromosome 21, instead of the usual two. ...

Recommended for you

Scientists reverse aging-associated skin wrinkles and hair loss in a mouse model

July 20, 2018
Wrinkled skin and hair loss are hallmarks of aging. What if they could be reversed?

Breakthrough could impact cancer, ageing and heart disease

July 20, 2018
A team of Sydney scientists has made a groundbreaking discovery in telomere biology, with implications for conditions ranging from cancer to ageing and heart disease. The research project was led by Dr. Tony Cesare, Head ...

Enzyme identified as possible novel drug target for sickle cell disease, Thalassemia

July 19, 2018
Medical researchers have identified a key signaling protein that regulates hemoglobin production in red blood cells, offering a possible target for a future innovative drug to treat sickle cell disease (SCD). Experiments ...

Supplement may ease the pain of sickle cell disease

July 19, 2018
(HealthDay)—An FDA-approved supplement reduces episodes of severe pain in people with sickle cell disease, a new clinical trial shows.

Mice given metabolite succinate found to lose weight by turning up the heat

July 19, 2018
A team of researchers with members from institutions across the U.S. and Canada has found that giving the metabolite succinate to mice fed a high-fat diet prevented obesity. In their paper published in the journal Nature, ...

Scientists uncover DNA 'shield' with crucial roles in normal cell division

July 18, 2018
Scientists have made a major discovery about how cells repair broken strands of DNA that could have huge implications for the treatment of cancer.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.