Scientists discover how HIV virus gains access to carrier immune cells to spread infection

December 18, 2012, Public Library of Science
A three-dimensional reconstruction of a mature dendritic cell (in gray) where HIV (in red) is stored with the new receptor identified, Siglec-1 (in green). The yellow color appears when the virus (in red) and the receptor (in green) localize within the same compartment of the cell. In blue, the nucleus of the dendritic cell. Credit: Public Library of Science

Scientists from the AIDS Research Institute IrsiCaixa have identified how HIV, the virus that causes AIDS, enters the cells of the immune system enabling it to be dispersed throughout an organism. The new study is published December 18 in the open access journal PLOS Biology.

One of the reasons why we do not yet have a cure for is that the virus infects of the immune system that would normally fight such an infection. The main targets of HIV are named CD4 T lymphocytes (so called because they have the protein CD4 in their membrane), and while more than 20 different drugs are available today to help control HIV, all of them act by blocking the cycle that HIV follows to infect these CD4 T lymphocytes. However, these treatments do not fully act on another cell of the immune system, the dendritic cell, which takes up HIV and spreads it to target CD4 T lymphocytes.

Mature dendritic cells are responsible for activating an by CD4 T lymphocytes, but when they carry viruses, their contact with T lymphocytes causes the virus to be passed on, thus increasing viral spread.

The results continue the research led by ICREA researchers at IrsiCaixa, Javier Martínez-Picado, and Nuria Izquierdo-Useros, in collaboration with research groups from Heidelberg University, Germany, and the University of Lausanne, Switzerland. This team published a previous paper in April 2012, in which they identified , called gangliosides, located on the surface of HIV that are recognized by dendritic cells and are necessary for viral uptake. The new results now identify a molecule on the surface of dendritic cells that recognizes and binds the gangliosides and allows HIV to be taken up by dendritic cells and transmitted to its ultimate target: T lymphocytes.

"We have observed that the protein that acts as a lock for the entrance of HIV could also facilitate the entrance of other viruses," explains Nuria Izquierdo-Useros. "Therefore, our results could also help us understand how other infections might exploit this mechanism of dispersion."

In order to identify the precise molecule located on the membrane of the dendritic cells capable of capturing HIV, the researchers studied one family of proteins that are present on the surface of these cells, called Siglecs. It is known that these proteins bind to the gangliosides on the HIV surface. In the laboratory, they mixed the virus with dendritic cells that displayed different quantities of Siglec-1, and found that a higher quantity of Siglec-1 led to those dendritic cells capturing more HIV, which in turn allowed for enhanced transmission of HIV to CD4 T lymphocytes, a process called trans-infection.

The team then tried inhibiting the Siglec-1 protein. Doing so in the laboratory, they found that the dendritic cells lost their capacity to capture HIV and, importantly, they also lost their ability to transfer HIV to CD4 T lymphocytes. With all these data, the scientists concluded that Siglec-1 is the molecule responsible for entrance into the , and could therefore become a new therapeutic target.

"We had the key and now we have found a lock," explains Javier Martínez-Picado. "Now we are already working on the development of a drug that could block this process to improve the efficacy of the current existing treatments against AIDS".

Explore further: New memory for HIV patients

More information: Izquierdo-Useros N, Lorizate M, Puertas MC, Rodriguez-Plata MT, Zangger N, et al. (2012) Siglec-1 Is a Novel Dendritic Cell Receptor That Mediates HIV-1 Trans-Infection Through Recognition of Viral Membrane Gangliosides. PLoS Biol 10(12): e1001448. doi:10.1371/journal.pbio.1001448

Related Stories

New memory for HIV patients

March 26, 2012
The hallmark loss of helper CD4+ T cells during human immunodeficiency virus (HIV) infection may be a red herring for therapeutics, according to a study published on March 26th in the Journal of Experimental Medicine.

Mechanism of HIV spread has potential for future drug therapy

April 23, 2012
A new understanding of the initial interactions of human immunodeficiency virus type 1 (HIV-1) and dendritic cells is described by Boston University School of Medicine (BUSM) researchers in a study currently featured in the ...

Sugar-binding protein may play a role in HIV infection

June 14, 2011
Specific types of "helper" T cells that are crucial to maintaining functioning immune systems contain an enzyme called PDI (protein disulfide isomerase).

New HIV-vaccine tested on people

February 13, 2012
Scientists from the Antwerp Institute of Tropical Medicine, Antwerp University Hospital and Antwerp University have tested a new 'therapeutic vaccine' against HIV on volunteers. The participants were so to say vaccinated ...

Recommended for you

War in Ukraine has escalated HIV spread in the country: study

January 15, 2018
Conflict in Ukraine has increased the risk of HIV outbreaks throughout the country as displaced HIV-infected people move from war-affected regions to areas with higher risk of transmission, according to analysis by scientists.

Researchers offer new model for uncovering true HIV mortality rates in Zambia

January 12, 2018
A new study that seeks to better ascertain HIV mortality rates in Zambia could provide a model for improved national and regional surveillance approaches, and ultimately, more effective HIV treatment strategies.

New drug capsule may allow weekly HIV treatment

January 9, 2018
Researchers at MIT and Brigham and Women's Hospital have developed a capsule that can deliver a week's worth of HIV drugs in a single dose. This advance could make it much easier for patients to adhere to the strict schedule ...

New long-acting, less-toxic HIV drug suppresses virus in humanized mice

January 8, 2018
A team of Yale researchers tested a new chemical compound that suppresses HIV, protects immune cells, and remains effective for weeks with a single dose. In animal experiments, the compound proved to be a promising new candidate ...

Usage remains low for pill that can prevent HIV infection

January 8, 2018
From gritty neighborhoods in New York and Los Angeles to clinics in Kenya and Brazil, health workers are trying to popularize a pill that has proven highly effective in preventing HIV but which—in their view—remains woefully ...

Researchers find clues to AIDS resistance in sooty mangabey genome

January 3, 2018
Peaceful co-existence, rather than war: that's how sooty mangabeys, a monkey species found in West Africa, handle infection by SIV, a relative of HIV, and avoid developing AIDS-like disease.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.