Rats' brains are more like ours than scientists previously thought

March 27, 2013 by Seth Palmer
Sensory-motor transformations in rat motor cortex; from collaborative work between Jared Smith, Kevin Alloway and Patrick Drew. Credit: Alloway Lab, Penn State

(Medical Xpress)—Neuroscientists face a multitude of challenges in their efforts to better understand the human brain. If not for model organisms such as the rat, they might never know what really goes on inside our heads.

The brain is a phenomenal processor that in a year's time can generate roughly 300,000 of data—30,000 times the amount generated by the Large Hadron Collider. Trying to decipher its signals is a daunting prospect.

But particularly for individuals who have lost a limb or been partially or fully paralyzed, such research has potentially life-changing results because it can enable such biotechnological advances as the development of a for controlling .

Such devices require a detailed understanding of the motor cortex, a part of the brain that is crucial in issuing the neural commands that execute behavioral movements. A recent paper published in the journal Frontiers in Neural Circuits by Jared Smith and Kevin Alloway, researchers at the Penn State Center for Neural Engineering and affiliates of the Huck Institutes of the Life Sciences, details their discovery of a parallel between the motor of rats and humans that signifies a greater relevance of the to studies of the human brain than scientists had previously known.

"The motor cortex in primates is subdivided into multiple regions, each of which receives unique inputs that allow it to perform a specific motor function," said Alloway, professor of neural and behavioral sciences. "In the rat brain, the motor cortex is small and it appeared that all of it received the same type of input. We know now that to the rat motor cortex terminate in a small region of the motor cortex that is distinct from the larger region that issues the motor commands. Our work demonstrates that the rat motor cortex is parcellated into distinct subregions that perform specific functions, and this result appears to be similar to what is seen in the primate brain."

"You have to take into account the animal's natural behaviors to best understand how its brain is structured for sensory and motor processing," said Jared Smith, graduate student in the Huck Institutes' neuroscience program and the first author of the paper. "For primates like us, that means a strong reliance on visual information from the eyes, but for rats it's more about the somatosensory inputs from their whiskers."

In fact, nearly a third of the rat's sensorimotor cortex is devoted to processing whisker-related information, even though the whiskers' occupy only one-third of one percent of the rat's total body surface. In humans, nearly 40 percent of the entire cortex is devoted to processing visual information even though the eyes occupy a very tiny portion of our body's surface.

To understand the structure and function of the rat motor cortex, Smith and Alloway conducted a series of experiments focused on the medial agranular region, which responds to whisker stimulation and elicits whisker movements when stimulated.

"Our research," said Smith, "was conducted in two stages to investigate the functional organization of the brain: first tracing the neuronal connectivity, and then measuring how the circuits behave in terms of their electrophysiology. Just like in any electrical circuit, the first thing you need to do is trace the wires to see how the different components are connected. Then you can use this information to make sense of the activity going on at any particular node. In the end, you can step back and see how all the circuits work together to achieve something more complex, such as motor control."

"We discovered different sensory input regions that were distinct from the region that issued the motor commands to move the whiskers," said Alloway. "In this respect, we were fortunate to have Patrick Drew [assistant professor of engineering science and mechanics and neurosurgery at Penn State] help us analyze the EMG signals produced by microstimulation because this showed that the sensory input region was significantly less effective in evoking whisker movements."

As a result of Smith and Alloway's discovery, previously published data on the rat can be revisited with a new degree of specificity, and more similarities between the brains and neural processes of rats and humans may eventually come to light, perhaps even informing studies of other model organisms. This discovery is also likely to advance the study of the .

"This study opens up avenues for studying some very complex neural processes in rodents that are more like our own than we had previously thought," said Smith. "The tools now available for studying activity in the rodent brain are improving at a remarkable pace, and the findings are even more interesting as we discover just how similar these mammalian relatives are to us. This is a very exciting time in neuroscience."

Explore further: New brain circuit sheds light on development of voluntary movements

Related Stories

New brain circuit sheds light on development of voluntary movements

January 23, 2013
All parents know the infant milestones: turning over, learning to crawl, standing, and taking that first unassisted step. Achieving each accomplishment presumably requires the formation of new connections among subsets of ...

One neuron has huge impact on brain behaviour

November 15, 2012
(Medical Xpress)—Researchers from Australia and the USA have made a unique discovery about how the brain computes sensory information.

From the twitching whiskers of babes: Naptime behavior shapes the brain

October 18, 2012
The whiskers of newborn rats twitch as they sleep, and that could open the door to new understandings about the intimate connections between brain and body. The discovery reinforces the notion that such involuntary movements ...

Study sheds light on how our brains move limbs

January 16, 2013
(Medical Xpress)—A Queen's University study is giving new insight into how the neurons in our brains control our limbs. The research might one day help with the design of more functional artificial limbs.

Neural interface for prosthesis can restore function in motor control brain areas

August 20, 2012
Amputation disrupts not only the peripheral nervous system but also central structures of the brain. While the brain is able to adapt and compensate for injury in certain conditions, in amputees the traumatic event prevents ...

Recommended for you

The neural codes for body movements

July 21, 2017
A small patch of neurons in the brain can encode the movements of many body parts, according to researchers in the laboratory of Caltech's Richard Andersen, James G. Boswell Professor of Neuroscience, Tianqiao and Chrissy ...

Faulty support cells disrupt communication in brains of people with schizophrenia

July 20, 2017
New research has identified the culprit behind the wiring problems in the brains of people with schizophrenia. When researchers transplanted human brain cells generated from individuals diagnosed with childhood-onset schizophrenia ...

Scientists reveal how patterns of brain activity direct specific body movements

July 20, 2017
New research by Columbia scientists offers fresh insight into how the brain tells the body to move, from simple behaviors like walking, to trained movements that may take years to master. The discovery in mice advances knowledge ...

Scientists discover combined sensory map for heat, humidity in fly brain

July 20, 2017
Northwestern University neuroscientists now can visualize how fruit flies sense and process humidity and temperature together through a "sensory map" within their brains, according to new research.

Team traces masculinization in mice to estrogen receptor in inhibitory neurons

July 20, 2017
Researchers at Cold Spring Harbor Laboratory (CSHL) have opened a black box in the brain whose contents explain one of the remarkable yet mysterious facts of life.

Speech language therapy delivered through the Internet leads to similar improvements as in-person treatment

July 20, 2017
Telerehabilitation helps healthcare professionals reach more patients in need, but some worry it doesn't offer the same quality of care as in-person treatment. This isn't the case, according to recent research by Baycrest.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.