Enhanced white blood cells heal mice with MS-like disease

June 1, 2013, University of Wisconsin-Madison

Genetically engineered immune cells seem to promote healing in mice infected with a neurological disease similar to multiple sclerosis (MS), cleaning up lesions and allowing the mice to regain use of their legs and tails.

The new finding, by a team of University of Wisconsin School of Medicine and Public Health researchers, suggests that could be engineered to create a new type of treatment for people with MS.

Currently, there are few good medications for MS, an autoimmune inflammatory disease that affects some 400,000 people in the United States, and none that reverse progress of the disease.

Dr. Michael Carrithers, assistant professor of neurology, led a team that created a specially designed macrophage – an immune cell whose name means "big eater." rush to the site of an injury or infection, to destroy bacteria and viruses and clear away damaged tissue. The research team added a to the mouse immune cell, creating a macrophage that expressed a called NaVI.5, which seems to enhance the cell's .

But because macrophages can also be part of the that damages the protective covering () of the nerves in people with MS, scientists weren't sure whether the NaV1.5 macrophages would help or make the disease worse.

When the mice developed experimental autoimmune encephalomyelitis – the mouse version of MS—they found that the NaV1.5 macrophages sought out the caused by the disease and promoted recovery.

"This finding was unexpected because we weren't sure how much damage they would do, versus how much cleaning up they would do,'' Carrithers says. "Some people thought the mice would get more ill, but we found that it protected them and they either had no disease or a very mild case."

In follow-up experiments, regular mice that do not express the human gene were treated with the NaV1.5 macrophages after the onset of symptoms, which include weakness of the back and front limbs. The majority of these mice developed complete paralysis of their hindlimbs. Almost all of the mice that were treated with the Na1.5 macrophages regained the ability to walk. Mice treated with placebo solution or regular mouse macrophages that did not have NaV1.5 did not show any recovery or became more ill. In treated mice, the research team also found the NaV1.5 macrophages at the site of the lesions, and found smaller lesions and less damaged tissue in the treated mice.

Because the NaV1.5 variation is present in human immune cells, Carrithers says, "The questions are, 'Why are these repair mechanisms deficient in patients with MS and what can we do to enhance them?' '' He says the long-range goal is to develop the NaV1.5 enhanced macrophages as a treatment for people with MS.

Carrithers is a neurologist who treats patients with multiple sclerosis at University of Wisconsin Hospital and Clinics and the William S. Middleton Veterans' Hospital in Madison. His research team includes Kusha Rahgozar, Erik Wright and Lisette Carrithers. The research was supported by a prior National MS Society research grant and a current VA Merit Award from the Biomedical Laboratory Research and Development service of the Department of Veterans Affairs (7784115).

The study is being published in the June issue of the Journal of Neuropathology and Experimental Neurology.

Explore further: Study identifies new approach to improving treatment for MS and other conditions

Related Stories

Study identifies new approach to improving treatment for MS and other conditions

May 17, 2013
(Medical Xpress)—Working with lab mice models of multiple sclerosis (MS), UC Davis scientists have detected a novel molecular target for the design of drugs that could be safer and more effective than current FDA-approved ...

Researchers prevent mice from developing diabetes

June 29, 2012
(Medical Xpress) -- Swedish research group headed at Karolinska Institutet has been able to prevent onset of Type 1 diabetes in mice that are genetically susceptible to the disease. Through injection of specifically prepared ...

Diabetic mice provide a surprising breakthrough for multiple sclerosis research

January 5, 2012
(Medical Xpress) -- In humans, active periods of the debilitating disease Multiple Sclerosis (MS) can last for mere minutes or extend to weeks at a time. They're caused by lesions in the brain that develop, partly heal, and ...

Study finds key protein for firing up central nervous system inflammation

May 2, 2013
Scientists have identified an influential link in a chain of events that leads to autoimmune inflammation of the central nervous system in a mouse model of multiple sclerosis (MS).

Cancer drug a possible treatment for multiple sclerosis

February 21, 2013
(Medical Xpress)—A drug that is currently used for cancer can relieve and slow down the progression of the autoimmune disease multiple sclerosis (MS) in rats, according to a new study published in PLOS ONE. The discovery, ...

Mayo Clinic uses new approach to reverse multiple sclerosis in mice models

June 28, 2012
Mayo Clinic researchers have successfully used smaller, folded DNA molecules to stimulate regeneration and repair of nerve coatings in mice that mimic multiple sclerosis (MS). They say the finding, published today in the ...

Recommended for you

Research reveals atomic-level changes in ALS-linked protein

January 18, 2018
For the first time, researchers have described atom-by-atom changes in a family of proteins linked to amyotrophic lateral sclerosis (ALS), a group of brain disorders known as frontotemporal dementia and degenerative diseases ...

Fragile X finding shows normal neurons that interact poorly

January 18, 2018
Neurons in mice afflicted with the genetic defect that causes Fragile X syndrome (FXS) appear similar to those in healthy mice, but these neurons fail to interact normally, resulting in the long-known cognitive impairments, ...

How your brain remembers what you had for dinner last night

January 17, 2018
Confirming earlier computational models, researchers at University of California San Diego and UC San Diego School of Medicine, with colleagues in Arizona and Louisiana, report that episodic memories are encoded in the hippocampus ...

Recording a thought's fleeting trip through the brain

January 17, 2018
University of California, Berkeley neuroscientists have tracked the progress of a thought through the brain, showing clearly how the prefrontal cortex at the front of the brain coordinates activity to help us act in response ...

Midbrain 'start neurons' control whether we walk or run

January 17, 2018
Locomotion comprises the most fundamental movements we perform. It is a complex sequence from initiating the first step, to stopping when we reach our goal. At the same time, locomotion is executed at different speeds to ...

A 'touching sight': How babies' brains process touch builds foundations for learning

January 16, 2018
Touch is the first of the five senses to develop, yet scientists know far less about the baby's brain response to touch than to, say, the sight of mom's face, or the sound of her voice.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

c0y0te
4 / 5 (2) Jun 02, 2013
That's some really great progress. Good news for ms patients. But, placebo given to mice?!? Are you kidding?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.