Covert operations: Your brain digitally remastered for clarity of thought

September 20, 2013, Virginia Tech
Stephen LaConte, an assistant professor at the Virginia Tech Carilion Research Institute, says brain-computer interfaces now enable us to eavesdrop on previously undetectable mental activities. Credit: Virginia Tech

The sweep of a needle across the grooves of a worn vinyl record carries distinct sounds: hisses, scratches, even the echo of skips. For many years, though, those yearning to hear Frank Sinatra sing "Fly Me to the Moon" have been able to listen to his light baritone with technical clarity, courtesy of the increased signal-to-noise ratio of digital remasterings.

Now, with advances in neurofeedback techniques, the signal-to-noise ratio of the underlying our thoughts can be remastered as well, according to a recent discovery in the Proceedings of the National Academy of Sciences by a research team led by Stephen LaConte, an assistant professor at the Virginia Tech Carilion Research Institute.

LaConte and his colleagues specialize in real-time functional magnetic resonance imaging, a relatively new technology that can convert thought into action by transferring noninvasive measurements of human brain activity into control signals that drive physical devices and computer displays in real time. Crucially, for the ultimate goal of treating disorders of the brain, this rudimentary form of mind reading enables neurofeedback.

"Our brains control overt actions that allow us to interact directly with our environments, whether by swinging an arm or singing an aria," LaConte said. "Covert mental activities, on the other hand—such as visual imagery, inner language, or recollections of the past—can't be observed by others and don't necessarily translate into action in the outside world."

But, LaConte added, brain–computer interfaces now enable us to eavesdrop on previously undetectable mental activities.

In the recent study, the scientists used whole-brain, classifier-based real-time to understand the of brain–computer interface control. The research team asked two dozen subjects to control a visual interface by silently counting numbers at fast and slow rates. For half the tasks, the subjects were told to use their thoughts to control the movement of the needle on the device they were observing; for the other tasks, they simply watched the needle.

The scientists discovered a feedback effect that LaConte said he had long suspected existed but had found elusive: the subjects who were in control of the needle achieved a better whole-brain signal-to-noise ratio than those who simply watched the needle move.

"When the subjects were performing the counting task without feedback, they did a pretty good job," LaConte said. "But when they were doing it with feedback, we saw increases in the signal-to-noise ratio of the entire brain. This improved clarity could mean that the signal was sharpening, the noise was dropping, or both. I suspect the brain was becoming less noisy, allowing the subject to concentrate on the task at hand."

The scientists also found that the act of controlling the computer–brain interface led to an increased classification accuracy, which corresponded with improvements in the whole-brain signal-to-noise ratio.

This enhanced signal-to-noise ratio, LaConte added, carries implications for brain rehabilitation.

"When people undergoing real-time brain scans get feedback on their own brain activity patterns, they can devise ways to exert greater control of their mental processes," LaConte said. "This, in turn, gives them the opportunity to aid in their own healing. Ultimately, we want to use this effect to find better ways to treat brain injuries and psychiatric and neurological disorders."

"Dr. LaConte's discovery represents a milestone in the development of noninvasive brain imaging approaches with potential for neurorehabilitation," said Michael Friedlander, executive director of the Virginia Tech Carilion Research Institute and a neuroscientist who specializes in brain plasticity. "This research carries implications for people whose brains have been damaged, such as through traumatic injury or stroke, in ways that affect the motor system—how they walk, move an arm, or speak, for example. Dr. LaConte's innovations with real-time functional brain imaging are helping to set the stage for the future, for capturing covert activity and creating better computer interfaces that can help people retrain their own brains."

Explore further: Real-time brain feedback can help people overcome anxiety

More information: The study appeared in the Proceedings of the National Academy of Sciences in the article "Brain–computer interfaces increase whole-brain signal to noise," by T. Dorina Papageorgiou: www.pnas.org/content/110/33/13630.short

Related Stories

Real-time brain feedback can help people overcome anxiety

May 9, 2013
(Medical Xpress)—People provided with a real-time readout of activity in specific regions of their brains can learn to control that activity and lessen their anxiety, according to new findings published online in the journal ...

Learning to control brain activity improves visual sensitivity

December 4, 2012
Training human volunteers to control their own brain activity in precise areas of the brain can enhance fundamental aspects of their visual sensitivity, according to a new study. This non-invasive 'neurofeedback' approach ...

A new tool for brain research

July 31, 2013
Physicists and neuroscientists from The University of Nottingham and University of Birmingham have unlocked one of the mysteries of the human brain, thanks to new research using functional Magnetic Resonance Imaging (fMRI) ...

Researcher controls colleague's motions in first human brain-to-brain interface (w/ Video)

August 27, 2013
(Medical Xpress)—University of Washington researchers have performed what they believe is the first noninvasive human-to-human brain interface, with one researcher able to send a brain signal via the Internet to control ...

Researchers find people learn to use brain-computer interfaces the same way as other motor skills

June 11, 2013
(Medical Xpress)—Researchers at the University of Washington have found that people who learn to control an object on a computer screen using only their thoughts, do so in ways that are very similar to the ways people learn ...

Artifact suppression and analysis of brain activities with EEG signals

July 12, 2013
Electroencephalography is a test to measure the electrical activity of the brain generated by scalp surface after being picked up by metal electrodes and conductive media.

Recommended for you

New neuron-like cells allow investigation into synthesis of vital cellular components

January 22, 2018
Neuron-like cells created from a readily available cell line have allowed researchers to investigate how the human brain makes a metabolic building block essential for the survival of all living organisms. A team led by researchers ...

Finding unravels nature of cognitive inflexibility in fragile X syndrome

January 22, 2018
Mice with the genetic defect that causes fragile X syndrome (FXS) learn and remember normally, but show an inability to learn new information that contradicts what they initially learned, shows a new study by a team of neuroscientists. ...

Epilepsy linked to brain volume and thickness differences

January 22, 2018
Epilepsy is associated with thickness and volume differences in the grey matter of several brain regions, according to new research led by UCL and the Keck School of Medicine of USC.

Research reveals atomic-level changes in ALS-linked protein

January 18, 2018
For the first time, researchers have described atom-by-atom changes in a family of proteins linked to amyotrophic lateral sclerosis (ALS), a group of brain disorders known as frontotemporal dementia and degenerative diseases ...

Fragile X finding shows normal neurons that interact poorly

January 18, 2018
Neurons in mice afflicted with the genetic defect that causes Fragile X syndrome (FXS) appear similar to those in healthy mice, but these neurons fail to interact normally, resulting in the long-known cognitive impairments, ...

How your brain remembers what you had for dinner last night

January 17, 2018
Confirming earlier computational models, researchers at University of California San Diego and UC San Diego School of Medicine, with colleagues in Arizona and Louisiana, report that episodic memories are encoded in the hippocampus ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.