New mechanism for protein misfolding may link to ALS

September 25, 2013, University of Technology, Sydney

Proteins play important roles in the human body, particularly neuroproteins that maintain proper brain function.

Brain diseases such as ALS, Alzheimer's, and Parkinson's are known as "tangle diseases" because they are characterized by misfolded and tangled proteins which accumulate in the brain.

A team of Australian and American scientists discovered that an unusual amino acid called BMAA can be inserted into neuroproteins, causing them to misfold and aggregate. BMAA is produced by cyanobacteria, that form scums or mats in or estuaries.

BMAA has been detected in the brain tissues of ALS patients.

In an article published in PLOS ONE scientists at the University of Technology Sydney and the Institute for Ethnomedicine in Jackson Hole, Wyoming, report that BMAA mimics a dietary aminoacid, L-Serine, and is mistakenly incorporated into neuroproteins, causing the proteins to misfold. The misfolded proteins build up in cells, eventually killing them.

"We found that BMAA inserts itself by seizing the transfer RNA for L-Serine. This, in essence, puts a kink in the protein causing it to misfold," says lead author Dr. Rachael Dunlop, a in Sydney working in the laboratory of Dr. Ken Rodgers.

"The cells then begin programmed cell death, called apoptosis. "Even more importantly, the scientists found that extra L-Serine added to the cell culture can prevent the insertion of BMAA into neuroproteins. The possibility that L-Serine could be used to prevent or slow ALS is now being studied."

Even though L-serine occurs in our diet, its safety and efficacy for ALS patients should be properly determined through FDA-approved clinical trials before anyone advocates its use," says American co-author Dr. Paul Cox.

In ALS, in the brain and spinal cord die, progressively paralyzing the body until even swallowing and breathing becomes impossible.

The disease is relatively rare but has affected a number of high-profile people including Professor Stephen Hawking and Yankee baseball player Lou Gehrig.

"For many years scientists have linked BMAA to an increased risk of motor neuron disease but the missing pieces of the puzzle relate to how this might occur. Finally, we have one of those pieces," said Dr Sandra Banack, a co-author on the paper.

Explore further: Neurotoxins in shark fins: A human health concern

More information: "The non-protein amino acid BMAA is misincorporated into human proteins in place of L-Serine causing protein misfolding and aggregation"

Related Stories

Neurotoxins in shark fins: A human health concern

February 23, 2012
Sharks are among the most threatened of marine species worldwide due to unsustainable overfishing. Sharks are primarily killed for their fins alone, to fuel the growing demand for shark fin soup, which is an Asia delicacy. ...

Staging system in ALS shows potential tracks of disease progression, study finds

June 19, 2013
The motor neuron disease Amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig's Disease, progresses in a stepwise, sequential pattern which can be classified into four distinct stages, report pathologists with the ...

Increased stability of a misfolded protein linked to age of onset of common form of motor neuron disease

April 22, 2013
Neurodegenerative diseases are characterized by the aggregation of misfolded proteins, which accumulate to form insoluble clumps within or around nerve cells. In the adult motor neuron disease amyotrophic lateral sclerosis ...

Receptor may aid spread of Alzheimer's and Parkinson's in brain

August 23, 2013
(Medical Xpress)—Scientists at Washington University School of Medicine in St. Louis have found a way that corrupted, disease-causing proteins spread in the brain, potentially contributing to Alzheimer's disease, Parkinson's ...

Neon exposes hidden ALS cells

April 30, 2013
A small group of elusive neurons in the brain's cortex play a big role in ALS (amyotrophic lateral sclerosis), a swift and fatal neurodegenerative disease that paralyzes its victims. But the neurons have always been difficult ...

How immune system, inflammation may play role in Lou Gehrig's disease

June 5, 2012
In an early study, UCLA researchers found that the immune cells of patients with amyotrophic lateral sclerosis (ALS), or Lou Gehrig's disease, may play a role in damaging the neurons in the spinal cord. ALS is a disease of ...

Recommended for you

Scientists discover new causes of cellular decline in prematurely aging kids

March 19, 2018
In a recent paper published in Cell Reports, Saint Louis University researchers have uncovered new answers about why cells rapidly age in children with a rare and fatal disease. The data points to cellular replication stress ...

Don't blame adolescent social behavior on hormones

March 19, 2018
Reproductive hormones that develop during puberty are not responsible for changes in social behavior that occur during adolescence, according to the results of a newly published study by a University at Buffalo researcher.

Stem cells treat macular degeneration

March 19, 2018
In July 2015, 86-year-old Douglas Waters developed severe age-related macular degeneration (AMD). He struggled to see things clearly, even when up close.

Measuring neutrophil motility could lead to accurate sepsis diagnosis

March 19, 2018
A microfluidic device developed by Massachusetts General Hospital (MGH) investigators may help solve a significant and persistent challenge in medicine—diagnosing the life-threatening complication of sepsis. In their paper ...

Democratizing science: Researchers make neuroscience experiments easier to share, reproduce

March 16, 2018
Over the past few years, scientists have faced a problem: They often cannot reproduce the results of experiments done by themselves or their peers.

Human 'chimeric' cells restore crucial protein in Duchenne muscular dystrophy

March 16, 2018
Cells made by fusing a normal human muscle cell with a muscle cell from a person with Duchenne muscular dystrophy —a rare but fatal form of muscular dystrophy—were able to significantly improve muscle function when implanted ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.