B cells school gut microbes

November 27, 2013 by Tom Ulrich, Harvard Medical School
Gut Microbes Teach B Cells

Your immune system's B cells can respond to an amazing number of pathogens—viruses, bacteria, etc.—without ever having encountered them. That's because, as they develop, your B cells reshuffle their antibody-producing genes into an amazing number of possible combinations—more than 100 million—to produce what's called your primary pre-immune B cell repertoire.

It's long been thought that in people and in mice this reshuffling process—called V(D)J recombination, after the B ' antibody-coding V, D and J gene segments—occurs in two places: the bone marrow and the spleen.

But new research from a team led by Fredrick Alt and Duane Wesemann at Harvard Medical School and Boston Children's Hospital suggests that there may be one more place B cells go to undergo recombination: the gut. What's more, that reshuffling in the gut may be influenced by the microbes that live there.

Early B cell programming in the gut isn't unheard of; it happens in species as diverse as sheep, rabbits and chickens.

"The B cell gets its name from the fact that it was discovered in chickens in an organ called the bursa," said Alt, HMS Charles A. Janeway Professor of Pediatrics and professor of genetics at Boston Children's. "That organ is in the chicken's gut and is an important training site for the chicken's B cells."

In fact, the presence of B cells in the gut is perfectly normal as well. The lamina propia, a layer of loose connective tissue just underneath the gut surface, is chock-full of mature B cells ready to grab pathogens that try to cross into the bloodstream.

However, while working on the origins of a kind of B cell lymphoma, Alt and Wesemann noticed immature B cells in the lamina propia of young mice. That came as a surprise, as typically only mature, fully grown B cells would be found in the gut.

"They're not mature, they're not producing antibody, why were they there?" Alt asked.

When examined, those showed evidence of active V(D)J recombination, a sign that their antibody repertoire was becoming more diverse; the cells were gaining the capability to react to more potential pathogens. What's more, as Alt and Wesemann reported in Nature, the repertoire in the lamina propia of these mice differed markedly from that in the bone marrow, suggesting that cells in the two locations were under different influences.

To better understand these influences, Wesemann took young mice that had been raised germ-free and housed some of them with mice from a regular, nonsterile animal facility, allowing their guts to be colonized by microbes from their cage mates. The researchers then compared the level of antibody gene reshuffling in gut B cells from the colonized mice versus the mice that stayed germ-free.

The results: Immature B cells from the colonized mice showed evidence of much more gene reshuffling than those from their germ-free peers, suggesting some kind of interaction between the gut microbes and the young B cells. In addition, the colonized mice had more reshuffling activity in immature B cells in the spleen and , reinforcing the notion that influence immune cell development throughout the body.

How and why this is happening is still unclear. What signals are the microbes producing? What roles do particular species of bacteria play? No one yet knows the answers to these or other questions, but the age of the mice may be a factor.

"It appears to happen only in a narrow window of time, when young mice are weaning," said Wesemann, who was a senior postdoctoral fellow in the Alt lab and recently became HMS assistant professor of medicine at Brigham and Women's Hospital. "It's a time period when environmental influences could help shape an animal's antibody repertoire."

"There also may be a relationship to allergies or food tolerance," Wesemann added.

Since immature B cells also exist in the lamina propia of humans, the same training process he and Alt found in mice could be taking place in us, he said.

The gut microbiome's sway over the immune system—its capability to train and dampen overreactions—has been a hot topic in recent years. But as Alt explained, much of that work has focused on T cells.

"The findings bring B cells into the picture of how microflora influence immune development," Alt said, "but they raise more questions than they answer."

Explore further: Study finds that microbes influence B-cell development in the gut

Related Stories

Study finds that microbes influence B-cell development in the gut

August 21, 2013
Gut bacteria exert a dramatic, systemic effect on the development of the immune system's B-lymphocytes, according to a new mouse study by researchers at Boston Children's Hospital. While influences of gut bacteria on T-lymphocytes ...

NIH team describes protective role of skin microbiota

July 26, 2012
A research team at the National Institutes of Health has found that bacteria that normally live in the skin may help protect the body from infection. As the largest organ of the body, the skin represents a major site of interaction ...

Stem cell transplant repairs damaged gut in mouse model of inflammatory bowel disease

October 17, 2013
A source of gut stem cells that can repair a type of inflammatory bowel disease when transplanted into mice has been identified by researchers at the Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute at ...

Fatty acid produced by gut bacteria boosts the immune system

November 13, 2013
New research from the RIKEN Center for Integrative Medical Sciences in Japan sheds light on the role of gut bacteria on the maturation of the immune system and provides evidence supporting the use of butyrate as therapy for ...

Researchers find gut bacteria teaches immune cells to see them as friendly

September 22, 2011
(Medical Xpress) -- Most people know that the gut (human or otherwise) has bacteria in it that helps in the proper digestion of food. But how these bacteria manage to evade destruction by the immune system has been a mystery. ...

Recommended for you

Researchers devise decoy molecule to block pain where it starts

January 16, 2018
For anyone who has accidentally injured themselves, Dr. Zachary Campbell not only sympathizes, he's developing new ways to blunt pain.

Scientists unleash power of genetic data to identify disease risk

January 16, 2018
Massive banks of genetic information are being harnessed to shed new light on modifiable health risks that underlie common diseases.

Blood-vessel-on-a-chip provides insight into new anti-inflammatory drug candidate

January 15, 2018
One of the most important and fraught processes in the human body is inflammation. Inflammatory responses to injury or disease are crucial for recruiting the immune system to help the body heal, but inflammation can also ...

Molecule produced by fat cells reduces obesity and diabetes in mice

January 15, 2018
UC San Francisco researchers have discovered a new biological pathway in fat cells that could explain why some people with obesity are at high risk for metabolic diseases such as type 2 diabetes. The new findings—demonstrated ...

Obese fat becomes inflamed and scarred, which may make weight loss harder

January 12, 2018
The fat of obese people becomes distressed, scarred and inflamed, which can make weight loss more difficult, research at the University of Exeter has found.

Optimized human peptide found to be an effective antibacterial agent

January 11, 2018
A team of researchers in the Netherlands has developed an effective antibacterial ointment based on an optimized human peptide. In their paper published in the journal Science Translational Medicine, the group describes developing ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

PPihkala
not rated yet Nov 27, 2013
So what is the critical time period of schooling B cells in human infants? And what can be done to make sure that infants get the best schooling for their immune system? Does solids introduction have a part in this process? And how about crawling in mud like children used to do and still do in less developed countries?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.