Study questions anti-cancer mechanisms of drug tested in clinical trials

January 13, 2014, Cincinnati Children's Hospital Medical Center

The diabetes drug metformin is also being tested in numerous clinical trials for treating different cancers, and several studies point to its apparent activation of a molecular regulator of cell metabolism called AMPK to suppress tumor growth.

But new research appearing the week of Jan. 13 in Proceedings of the National Academy of Sciences (PNAS) suggests that activation of AMPK may actually fuel growth. Researchers from Cincinnati Children's Hospital Medical Center who led the study also recommend that clinicians testing metformin for cancer treatment consider a careful re-evaluation of their clinical data.

The researchers report on extensive laboratory tests that conclude metformin does stop cancer, although not by activating AMPK. Instead, in tests involving glioma brain cancer cells, the authors found that metformin inhibits a different molecule called mammalian target of rapamycin (mTOR) that has been linked to many other cancers.

In the body, metformin also suppresses the actions of insulin and insulin-like growth factors – two molecules that support – and also likely independent of AMPK, according to Biplab Dasgupta, PhD, principal investigator and a researcher in the Division of Hematology/Oncology at Cincinnati Children's.

"Our findings do not suggest that clinical trials using metformin should be stopped. Metformin appears to be a very useful drug, but the drug's mechanism of cancer suppression is not clear," Dr. Dasgupta said. "However, our findings unveil a potential role for AMPK as a tumor growth supporter, not a suppressor, in the type of cancer that we study. This is why clinicians using metformin in should use caution during data interpretation."

Dasgupta and his research colleagues decided to tackle the question of metformin's anti-cancer properties because some studies point to AMPK as a tumor suppressor, while others have suggested it can promote . Ultimately, an accurate understanding of AMPK's role – and how a drug like metformin does stop cancer – will likely be important to continued improvement of targeted cancer therapies, he said.

AMPK is a metabolic enzyme that acts as a key sensor of energy levels in cells. It controls a number of metabolic pathways that allow cells to regulate their energy usage and survival under physiological stress. Cancer cells modify their metabolism to maintain their growth and survival in the stressful environment of the tumor.

To determine how AMPK and metformin react in the context of cancer, the researchers conducted tests using glioblastoma, a highly lethal brain cancer with no cure. Their experiments involved laboratory cell cultures of human glioblastoma cells and glioblastoma tumors transplanted in mice to obtain results in a living organism.

Compared to normal human and mouse tissue, the researchers found that AMPK was highly active in human and mouse glioblastoma cells. This led them to question whether the anti-cancer properties of metformin were independent of AMPK, and instead directed to other molecular pathways.

The researchers then treated human glioblastoma cells with metformin and conducted a series of genetic tests to determine the molecular pathways it uses to stop the cancer growth. Those tests showed clearly that metformin directly inhibited the mTOR pathway (and the cancer) by promoting the interaction of two upstream molecules that stop the pathway's function.

To further verify that AMPK activation by is not involved in stopping the growth of cancer, the researchers also treated the glioblastoma cells with a more specific AMPK activating compound called A769662 that directly binds to AMPK. The treatment did not kill glioblastoma cells, according to the authors.

Dasgupta and his colleagues are continuing their research by testing direct genetic inhibition of AMPK to see how it impacts human glioblastoma cells. Although that research still has to be completed and the results verified, he said preliminary indications are that blocking AMPK appears to kill a significant number of the glioblastoma .

Explore further: Cellular fuel gauge may hold the key to restricting cancer growth

More information: Discrete mechanisms of mTOR and cell cycle regulation by AMPK agonists independent of AMPK , www.pnas.org/cgi/doi/10.1073/pnas.1311121111

Related Stories

Cellular fuel gauge may hold the key to restricting cancer growth

December 27, 2012
Researchers at McGill University have discovered that a key regulator of energy metabolism in cancer cells known as the AMP-activated protein kinase (AMPK) may play a crucial role in restricting cancer cell growth. AMPK acts ...

Classic signaling pathway holds the key to prostate cancer progression

December 20, 2013
University of Houston researchers published a study investigating the processes through which androgen receptors affect prostate cancer progression. The publication, "Androgens Regulate Prostate Cancer Cell Growth via an ...

Diabetes drug metformin with chemo and radiation may improve outcomes in lung cancer patients

October 23, 2013
Treating aggressive lung cancer with the diabetes drug metformin along with radiation and chemotherapy may slow tumor growth and recurrence, suggests new preliminary findings from researchers at the Perelman School of Medicine ...

Metformin treatment caused cancer stem cell death in pancreatic cancer cell lines

June 19, 2012
Results of some preclinical trials have shown that low doses of the antidiabetic drug metformin may effectively destroy cancer stem cells, a group of cells that are considered to be responsible for tumor initiation and, because ...

Study: Metformin for breast cancer less effective at higher glucose concentrations

October 24, 2013
A University of Colorado Cancer Center study published online this month in the journal Cell Cycle shows that breast cancer cell growth, motility and aggression is promoted by excess glucose, as experienced by patients with ...

Cancer cell metabolism kills

April 15, 2013
Adenosine-5'-triphosphate (ATP) is the main energy source for all forms of work inside our cells. Scientists from the University of Helsinki, Finland, have found that even a short-term shortage of ATP supply can be fatal ...

Recommended for you

How cancer metastasis happens: Researchers reveal a key mechanism

January 18, 2018
Cancer metastasis, the migration of cells from a primary tumor to form distant tumors in the body, can be triggered by a chronic leakage of DNA within tumor cells, according to a team led by Weill Cornell Medicine and Memorial ...

Modular gene enhancer promotes leukemia and regulates effectiveness of chemotherapy

January 18, 2018
Every day, billions of new blood cells are generated in the bone marrow. The gene Myc is known to play an important role in this process, and is also known to play a role in cancer. Scientists from the German Cancer Research ...

These foods may up your odds for colon cancer

January 18, 2018
(HealthDay)—Chowing down on red meat, white bread and sugar-laden drinks might increase your long-term risk of colon cancer, a new study suggests.

The pill lowers ovarian cancer risk, even for smokers

January 18, 2018
(HealthDay)—It's known that use of the birth control pill is tied to lower odds for ovarian cancer, but new research shows the benefit extends to smokers or women who are obese.

Researchers develop swallowable test to detect pre-cancerous Barrett's esophagus

January 17, 2018
Investigators at Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center have developed a simple, swallowable test for early detection of Barrett's esophagus that offers promise ...

Scientists zoom in to watch DNA code being read

January 17, 2018
Scientists have unveiled incredible images of how the DNA code is read and interpreted—revealing new detail about one of the fundamental processes of life.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.