Stem cells from teeth can make brain-like cells

April 30, 2014 by David Ellis, University of Adelaide

(Medical Xpress)—University of Adelaide researchers have discovered that stem cells taken from teeth can grow to resemble brain cells, suggesting they could one day be used in the brain as a therapy for stroke.

In the University's Centre for Stem Cell Research, laboratory studies have shown that stem cells from can develop and form of brain-like cells. Although these cells haven't developed into fully fledged neurons, researchers believe it's just a matter of time and the right conditions for it to happen.

"Stem cells from teeth have great potential to grow into new brain or nerve cells, and this could potentially assist with treatments of brain disorders, such as ," says Dr Kylie Ellis, Commercial Development Manager with the University's commercial arm, Adelaide Research & Innovation (ARI).

Dr Ellis conducted this research as part of her Physiology PhD studies at the University, before making the step into commercialisation. The results of her work have been published in the journal Stem Cell Research & Therapy.

"The reality is, treatment options available to the thousands of stroke patients every year are limited," Dr Ellis says. "The primary drug treatment available must be administered within hours of a stroke and many people don't have access within that timeframe, because they often can't seek help for some time after the attack.

"Ultimately, we want to be able to use a patient's own stem cells for tailor-made brain therapy that doesn't have the host rejection issues commonly associated with cell-based therapies. Another advantage is that dental pulp stem cell therapy may provide a treatment option available months or even years after the stroke has occurred," she says.

Dr Ellis and her colleagues, Professors Simon Koblar, David O'Carroll and Stan Gronthos, have been working on a laboratory-based model for actual treatment in humans. As part of this research Dr Ellis found that stem cells derived from teeth developed into cells that closely resembled neurons.

"We can do this by providing an environment for the cells that is as close to a normal brain environment as possible, so that instead of becoming cells for teeth they become ," Dr Ellis says.

"What we developed wasn't identical to normal neurons, but the new cells shared very similar properties to neurons. They also formed complex networks and communicated through simple electrical activity, like you might see between in the developing brain."

This work with dental pulp opens up the potential for modelling many more common disorders in the laboratory, which could help in developing new treatments and techniques for patients.

Explore further: Stem cells aid recovery from stroke

More information: The study is available online: stemcellres.com/content/5/1/30

Related Stories

Stem cells aid recovery from stroke

January 27, 2013
Stem cells from bone marrow or fat improve recovery after stroke in rats, finds a study published in BioMed Central's open access journal Stem Cell Research & Therapy. Treatment with stem cells improved the amount of brain ...

Study finds long-term survival of human neural stem cells transplanted into primate brain

April 23, 2014
A team of researchers in Korea who transplanted human neural stem cells (hNSCs) into the brains of nonhuman primates and assessed cell survival and differentiation after 22 and 24 months found that the hNSCs had differentiated ...

Important step towards stem cell-based treatment for stroke

October 25, 2013
Brain infarction or stroke is caused by a blood clot blocking a blood vessel in the brain, which leads to interruption of blood flow and shortage of oxygen. Now a reserach group at Lund University, Sweden, has taken an important ...

Bone marrow stem cells show promise in stroke treatment

April 9, 2014
Stem cells culled from bone marrow may prove beneficial in stroke recovery, scientists at UC Irvine's Sue & Bill Gross Stem Cell Research Center have learned.

Researcher to grow human cells in space to test treatment for stroke

December 19, 2013
Abba Zubair, M.D., Ph.D, believes that cells grown in the International Space Station (ISS) could help patients recover from a stroke, and that it may even be possible to generate human tissues and organs in space. He just ...

Recommended for you

Researchers illustrate how muscle growth inhibitor is activated, could aid in treating ALS

January 19, 2018
Researchers at the University of Cincinnati (UC) College of Medicine are part of an international team that has identified how the inactive or latent form of GDF8, a signaling protein also known as myostatin responsible for ...

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

The HLF gene protects blood stem cells by maintaining them in a resting state

January 17, 2018
The HLF gene is necessary for maintaining blood stem cells in a resting state, which is crucial for ensuring normal blood production. This has been shown by a new research study from Lund University in Sweden published in ...

Magnetically applied MicroRNAs could one day help relieve constipation

January 17, 2018
Constipation is an underestimated and debilitating medical issue related to the opioid epidemic. As a growing concern, researchers look to new tools to help patients with this side effect of opioid use and aging.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.