Team finds a better way to grow motor neurons from stem cells

April 1, 2014
University of Illinois cell and developmental biology professor Fei Wang, left; visiting scholar Qiuhao Qu, center; materials science and engineering professor Jianjun Cheng; and their colleagues improved the process of converting stem cells into motor neurons. (Neurons are green; motor neurons are red in the image on the screen.) Credit: L. Brian Stauffer

Researchers report they can generate human motor neurons from stem cells much more quickly and efficiently than previous methods allowed. The finding, described in Nature Communications, will aid efforts to model human motor neuron development, and to understand and treat spinal cord injuries and motor neuron diseases such as amyotrophic lateral sclerosis (ALS).

The new method involves adding critical signaling molecules to precursor a few days earlier than previous methods specified. This increases the proportion of healthy motor neurons derived from (from 30 to 70 percent) and cuts in half the time required to do so.

"We would argue that whatever happens in the human body is going to be quite efficient, quite rapid," said University of Illinois cell and developmental biology professor Fei Wang, who led the study with visiting scholar Qiuhao Qu and materials science and engineering professor Jianjun Cheng. "Previous approaches took 40 to 50 days, and then the efficiency was very low – 20 to 30 percent. So it's unlikely that those methods recreate human motor neuron development."

Qu's method produced a much larger population of mature, functional motor neurons in 20 days.

The new approach will allow scientists to induce mature human motor neuron development in cell culture, and to identify the factors that are vital to that process, Wang said.

Stem cells are unique in that they can adopt the shape and function of a variety of cell types. Generating neurons from stem cells (either or those "induced" to revert back to an embryo-like state) requires adding signaling molecules to the cells at critical moments in their development.

Wang and other colleagues previously discovered a molecule (called compound C) that converts stem cells into "neural progenitor cells," an early stage in the cells' development into neurons. But further coaxing these cells to become motor neurons presented unusual challenges.

Previous studies added two important signaling molecules at Day 6 (six days after exposure to compound C), but with limited success in generating motor neurons. In the new study, Qu discovered that adding the at Day 3 worked much better: The quickly and efficiently differentiated into motor neurons.

This indicates that Day 3 represents a previously unrecognized neural progenitor cell stage, Wang said.

The new approach has immediate applications in the lab. Watching how stem cells (derived from ALS patients' own skin cells, for example) develop into motor neurons will offer new insights into disease processes, and any method that improves the speed and efficiency of generating the motor neurons will aid scientists. The cells can also be used to screen for drugs to treat , and may one day be used therapeutically to restore lost function.

"To have a rapid, efficient way to generate will undoubtedly be crucial to studying – and potentially also treating – and diseases like ALS," Wang said.

Explore further: Oligodendrocytes induce motor neuron death in ALS

More information: The paper, "High-Efficiency Motor Neuron Differentiation From HumanPluripotent Stem Cells and the Function of Islet-1," is available online: www.nature.com/ncomms/2014/140 … full/ncomms4449.html

Related Stories

Oligodendrocytes induce motor neuron death in ALS

September 27, 2016
A first-of-its-kind oligodendrocyte in vitro model shows that human cells normally supportive of motor neuron function play an active role in amyotrophic lateral sclerosis pathogenesis – and this discovery may point the ...

ALS research suggests stem cells be 'aged' to speed progress toward finding treatments

July 19, 2016
Cedars-Sinai scientists are seeking to build an improved stem-cell model of amyotrophic lateral sclerosis (ALS) to accelerate progress toward a cure for the devastating neurological disorder. Their findings demonstrate that ...

Zebrafish study offers insights into nerve cell repair mechanisms

October 22, 2015
Tropical fish may hold clues that could aid research into motor neuron disease and paralysis caused by spinal cord injury.

Stem cell scientists develop more effective way to create motor neurons

April 22, 2015
Often described as the final frontier of biology, the nervous system is a complex network comprised of the brain, spinal cord and the nerves that run through the body. Published today by scientists led by Bennett Novitch, ...

New stem cell research uncovers causes of spinal muscular atrophy

July 1, 2015
New research from the Advanced Gene and Cell Therapy Lab at Royal Holloway, University of London has used pioneering stem cell techniques to better understand why certain cells are more at risk of degenerating in spinal muscular ...

Resistant neurons point the way to protective factors in ALS

May 17, 2016
The growth factor IGF-2 can prevent the death of human nerve cells in the incurable disease ALS, according to a study by researchers at Sweden´s Karolinska Institutet and the University of Milan in Italy. The study, which ...

Recommended for you

Want to win at sports? Take a cue from these mighty mice

July 20, 2017
As student athletes hit training fields this summer to gain the competitive edge, a new study shows how the experiences of a tiny mouse can put them on the path to winning.

Engineered liver tissue expands after transplant

July 19, 2017
Many diseases, including cirrhosis and hepatitis, can lead to liver failure. More than 17,000 Americans suffering from these diseases are now waiting for liver transplants, but significantly fewer livers are available.

Lunatic Fringe gene plays key role in the renewable brain

July 19, 2017
The discovery that the brain can generate new cells - about 700 new neurons each day - has triggered investigations to uncover how this process is regulated. Researchers at Baylor College of Medicine and Jan and Dan Duncan ...

'Smart' robot technology could give stroke rehab a boost

July 19, 2017
Scientists say they have developed a "smart" robotic harness that might make it easier for people to learn to walk again after a stroke or spinal cord injury.

New animal models for hepatitis C could pave the way for a vaccine

July 19, 2017
They say that an ounce of prevention is worth a pound of cure. In the case of hepatitis C—a disease that affects nearly 71 million people worldwide, causing cirrhosis and liver cancer if left untreated—it might be worth ...

Omega-3 fatty acids fight inflammation via cannabinoids

July 18, 2017
Chemical compounds called cannabinoids are found in marijuana and also are produced naturally in the body from omega-3 fatty acids. A well-known cannabinoid in marijuana, tetrahydrocannabinol, is responsible for some of its ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.