Researchers identify a mechanism that stops progression of abnormal cells into cancer

August 14, 2014, Boston University Medical Center

Researchers from Boston University School of Medicine (BUSM) report that a tumor suppressor pathway, called the Hippo pathway, is responsible for sensing abnormal chromosome numbers in cells and triggering cell cycle arrest, thus preventing progression into cancer.

Although the link between and pathways—like that mediated by the well known —has been firmly established, the critical steps in between are not well understood. According to the authors, whose work appears in Cell, this work completes at least one of the missing links.

Normal human cells contain 23 pairs of chromosomes, but this number doubles to 46 pairs as a cell prepares to divide. At the end of a normal cycle, these chromosomes evenly divide to produce two identical cells with 23 pairs of chromosomes each. Sometimes, however, errors occur during division and cells fail to divide properly, resulting in with double the number of chromosomes, known as a tetraploid cells. Normally, p53 dependent pathways stop these tetraploid cells from proliferating. This response is critical because those tetraploid cells that escape detection can facilitate cancer development: Recent studies suggest that as many as 40% of all solid tumors have passed through a tetraploid stage at some point during their development. Thus, there has been great interest in understanding how a cell "knows" it has a tetraploid complement of chromosomes and is in need of tumor suppression.

Using a technique known as genome-wide screening, the scientists systematically depleted every human gene from tetraploid cells in order to discover which ones were important to prevent proliferation. They found that when one specific gene, LATS2, was eliminated, the arrested tetraploid cells resumed proliferation, thus demonstrating that LATS2 was an upstream gene responsible for halting abnormal cell division. The LATS2 gene is known to activate the Hippo tumor suppressor pathway, which is the same pathway our bodies use to ensure our vital organs don't grow out of control. Now, the authors demonstrate that the Hippo pathway also represents the underlying pathway that prevents tetraploid cells from proliferating and causing tumors. "Although more studies are needed to further clarify this critical pathway, this work may help guide the development of new therapies that specifically target tumor cells with abnormal numbers of , while sparing the normal healthy from which they originated," explained corresponding author Neil J. Ganem, PhD, Assistant Professor of Pharmacology and Medicine in the Shamim and Ashraf Dahod Breast Cancer Research Laboratories at BUSM.

Explore further: Aspirin and resveratrol could prevent cancer by killing tetraploid cells, research shows

Related Stories

Aspirin and resveratrol could prevent cancer by killing tetraploid cells, research shows

February 11, 2014
(Medical Xpress)—Aspirin and resveratrol kill tetraploid cells in mice and humans, according to a study by Guido Kroemer of the Gustave Roussy Institute in Villejuif, France and his colleagues. Precancerous lesions often ...

Scientists uncover key piece to cancer cell survival puzzle

August 7, 2014
A chance meeting between two leading UK and US scientists could have finally helped solve a key mystery in cancer research.

Critical pathway in cell cycle may lead to cancer development

July 11, 2013
A team of scientists at the Salk Institute for Biological Studies has identified why disruption of a vital pathway in cell cycle control leads to the proliferation of cancer cells. Their findings on telomeres, the stretches ...

Recommended for you

How cancer metastasis happens: Researchers reveal a key mechanism

January 18, 2018
Cancer metastasis, the migration of cells from a primary tumor to form distant tumors in the body, can be triggered by a chronic leakage of DNA within tumor cells, according to a team led by Weill Cornell Medicine and Memorial ...

Modular gene enhancer promotes leukemia and regulates effectiveness of chemotherapy

January 18, 2018
Every day, billions of new blood cells are generated in the bone marrow. The gene Myc is known to play an important role in this process, and is also known to play a role in cancer. Scientists from the German Cancer Research ...

These foods may up your odds for colon cancer

January 18, 2018
(HealthDay)—Chowing down on red meat, white bread and sugar-laden drinks might increase your long-term risk of colon cancer, a new study suggests.

The pill lowers ovarian cancer risk, even for smokers

January 18, 2018
(HealthDay)—It's known that use of the birth control pill is tied to lower odds for ovarian cancer, but new research shows the benefit extends to smokers or women who are obese.

Researchers develop swallowable test to detect pre-cancerous Barrett's esophagus

January 17, 2018
Investigators at Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center have developed a simple, swallowable test for early detection of Barrett's esophagus that offers promise ...

Scientists zoom in to watch DNA code being read

January 17, 2018
Scientists have unveiled incredible images of how the DNA code is read and interpreted—revealing new detail about one of the fundamental processes of life.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.