Pathway linked to slower aging also fuels brain cancer

December 6, 2016
Researchers have shown that a metabolic pathway associated with slowing aging also drives brain cancer. In the image above, cancer stem cells in a mouse brain section glow fluorescent green, allowing researchers to study the effect of inhibiting the pathway on the ability of cancer stem cells to survive and proliferate. Credit: AMIT GUJAR AND ALBERT H. KIM

While a particular metabolic pathway shows potential to slow down the aging process, new research indicates a downside: That same pathway may drive brain cancer.

The , known as the nicotinamide adenine dinucleotide (NAD+) pathway, is overactive in a deadly form of brain cancer known as glioblastoma, according to a study by researchers at Washington University School of Medicine in St. Louis. Glioblastoma is the most common and aggressive in adults. Over 70 percent of patients with glioblastoma die within two years of diagnosis.

The new research showed that glioblastoma patients with high expression of an NAD+ pathway gene known as NAMPT died sooner. Tumors with elevated expression of the same gene grew rapidly when they were implanted in mice and shrank when NAMPT was inhibited.

The study, published Dec. 5 in Proceedings of the National Academy of Sciences, suggests that inhibiting the NAD+ pathway may improve the outlook for glioblastoma patients but also may affect other biological processes, such as aging.

NAMPT produces a molecule known as nicotinamide mononucleotide (NMN) that has been shown to reduce signs of aging in mice. While its safety in people has yet to be determined – a clinical trial is ongoing in Japan – NMN and other molecules along the NAD+ pathway are being marketed as anti-aging supplements.

"There's a lot of buzz about taking NAD+ precursors for their anti-aging effects, which is based on a lot of great science," said Albert H. Kim, MD, PhD, an assistant professor of neurological surgery and the senior author on the study. "We didn't directly demonstrate that taking NAD+ precursors makes tumors grow faster, but one implication of our work is that if you want to take anti-aging NAD+ precursors, you might want to keep in mind that we don't yet understand all the risks."

Using human glioblastoma cells, Kim, postdoctoral researcher Amit Gujar, PhD, and colleagues showed that NAMPT helped cancerous survive and proliferate, fueling the growth of existing tumors, while inhibiting NAMPT reduced the ability of the to renew themselves.

Furthermore, the scientists found that glioblastoma cells responded to radiation therapy – a standard therapy used to treat the disease in people – by increasing expression of NAD+ pathway genes, and that inhibiting NAMPT before dosing the cells with radiation made them easier to kill.

"If you target the NAD+ pathway, you can disrupt the ability of the cancer stem cells to self-renew, and you can also make them more sensitive to radiation treatment," said Kim, who also treats patients with brain tumors at Siteman Cancer Center at Washington University School of Medicine and Barnes-Jewish Hospital. "In a patient, that could mean that if you suppress the pathway, the same dose of radiation may be more effective at destroying the tumor."

The NAD+ pathway involves many different genes and proteins, and its very complexity may be the key to having it both ways. Kim believes it may be possible to carefully modulate the pathway so as to suppress cancer without accelerating aging or interfering with other important biological processes.

"The question we are considering now is, 'How do we make an NAD+ strategy that is specific for cancer?'" Kim said. "Maybe there are some cancer-specific regulators, and we can disrupt those. Maybe we can change the expression of some key NAD+ pathway genes only in cancer cells, not healthy cells. There are many ways to look at this, and that's why we want to dig deeper into how this pathway works in ."

Explore further: Study reveals new information on how brain cancer spreads

More information: An NAD+-dependent transcriptional program governs self-renewal and radiation resistance in glioblastoma. Proceedings of the National Academy of Sciences. Dec. 5, 2016.

Related Stories

Study reveals new information on how brain cancer spreads

November 17, 2016
Glioblastoma multiforme remains the most common and highly lethal brain cancer and is known for its ability to relapse. Researchers at The University of Texas MD Anderson Cancer Center have identified a pathway by which cancer ...

Critical immunotherapy target marks dysfunctional regulatory T cells in brain cancer

April 21, 2016
Immunotherapy represents an exciting advance in cancer treatment that harnesses the immune system to seek and destroy cancer cells. The programmed death 1 (PD-1) pathway dampens immune responses to tumor cells, and several ...

Recycling an anti-hypertensive agent to fight brain tumors

April 21, 2016
Treatments available for glioblastoma—malignant brain tumors—have little effect. An international collaboration led by the Laboratoire Neurosciences Paris-Seine (CNRS/ INSERM/UPMC) tested active ingredients from existing ...

Researchers identify protein pathway involved in brain tumor stem cell growth

February 26, 2015
Glioblastomas are a highly aggressive type of brain tumor, with few effective treatment options. Moffitt Cancer Center researchers are one step closer to understanding glioblastoma development following the identification ...

Research unravels new interactions affecting TGF-beta pathway in humans

December 21, 2015
Researchers from the Cancer Science Institute of Singapore (CSI Singapore) at the National University of Singapore (NUS) have delineated novel molecular interactions affecting the activity of the TGF-β pathway, a key cancer ...

Discovery of pathway for deadly cancer could lead to better diagnosis, treatment

July 3, 2013
(Medical Xpress)—University of Florida Health researchers have discovered a molecular pathway involved in the deadly spread of the most lethal kind of brain cancer.

Recommended for you

No dye: Cancer patients' gray hair darkened on immune drugs

July 21, 2017
Cancer patients' gray hair unexpectedly turned youthfully dark while taking novel drugs, and it has doctors scratching their heads.

Shooting the achilles heel of nervous system cancers

July 20, 2017
Virtually all cancer treatments used today also damage normal cells, causing the toxic side effects associated with cancer treatment. A cooperative research team led by researchers at Dartmouth's Norris Cotton Cancer Center ...

Molecular changes with age in normal breast tissue are linked to cancer-related changes

July 20, 2017
Several known factors are associated with a higher risk of breast cancer including increasing age, being overweight after menopause, alcohol intake, and family history. However, the underlying biologic mechanisms through ...

Immune-cell numbers predict response to combination immunotherapy in melanoma

July 20, 2017
Whether a melanoma patient will better respond to a single immunotherapy drug or two in combination depends on the abundance of certain white blood cells within their tumors, according to a new study conducted by UC San Francisco ...

Discovery could lead to better results for patients undergoing radiation

July 19, 2017
More than half of cancer patients undergo radiotherapy, in which high doses of radiation are aimed at diseased tissue to kill cancer cells. But due to a phenomenon known as radiation-induced bystander effect (RIBE), in which ...

Definitive genomic study reveals alterations driving most medulloblastoma brain tumors

July 19, 2017
The most comprehensive analysis yet of medulloblastoma has identified genomic changes responsible for more than 75 percent of the brain tumors, including two new suspected cancer genes that were found exclusively in the least ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.