Enzyme could protect against type of colorectal cancer by suppressing tumors, study finds

January 3, 2017
Credit: Georgia State University

An enzyme that plays an active role in inflammation could be a natural way to suppress tumors and ulcers in the colon that are found in colitis associated cancer (CAC), a type of colorectal cancer that is driven by chronic inflammation, according to a new study.

Researchers at Georgia State University and Stony Brook University have identified the tumor suppressor role of matrix-metalloproteinase (MMP9), which belongs to a family of enzymes called proteinases and serves as an essential regulator of extracellular matrix components via a novel mechanistic pathway. The findings are reported in the journal Oncotarget.

"In the setting of chronic inflammation, MMP9 expression functions as a silver lining by suppressing the advancement of the tumor microenvironment in CAC," said Dr. Pallavi Garg, assistant professor in the Institute for Biomedical Sciences at Georgia State.

Inflammation can be a beneficial response to tissue damage or pathogens, but if unregulated it can become and induce malignant in tissue that lead to cancer. Inflammatory bowel disease, which includes ulcerative colitis and Crohn's disease, involves inflammation of all or part of the digestive tract. Patients with chronically active have a significantly higher risk (up to 50 percent depending on the group of subjects) of developing CAC, a subtype of . The risk of CAC increases with the duration of the disease and the severity of inflammation.

The protein expression and activity of MMP9 is undetectable in most healthy adult tissues, including the colon and intestine, but it is highly expressed in a variety of inflammatory states. Previous studies have shown that MMP9 derived from plays a protective role in the development of CAC. Epithelial cells represent the lining of the gastrointestinal tract along the lumen, which is the inside space of a tubular structure. Almost 80 percent of cancers have epithelial cell origin. This study aimed to determine whether epithelial-derived MMP9 has a defensive role of tumor suppressor in CAC and the underlying molecular mechanism.

Researchers used transgenic mice that expressed MMP9 in the colonic epithelium for in vivo experiments. In vitro experiments used human colon carcinoma cells with and without MMP9 and mouse embryonic fibroblasts, which are that make the extracellular matrix and collagen and play an important role in tissue repair.

The researchers found mice that expressed MMP9 in the epithelium exhibited fewer tumors and increased apoptosis, or programmed cell death that gets rid of cells that are no longer needed or are a threat to the organism. Human that overexpressed MMP9 showed decreased cell proliferation, less DNA damage and cell cycle arrest in the S-phase to prevent cell proliferation.

In addition, they found that epithelial-derived MMP9 suppresses tumors in CAC by activating the MMP9-Notch1-ARF-p53 axis pathway, which increases apoptosis, initiates cell cycle arrest and keeps a check on DNA damage.

Explore further: Tumor surroundings are shown to affect progression of different cancer subtypes

Related Stories

Tumor surroundings are shown to affect progression of different cancer subtypes

May 27, 2015
Our environment can have a major impact on how we develop, and it turns out it's no different for cancer cells. In work published today in Neoplasia, a team of researchers led by Associate Professor Mikala Egeblad at Cold ...

Mystery molecule is a key to inhibiting colon cancer

December 12, 2016
Immunologists at St. Jude Children's Research Hospital have discovered that a protein called NLRC3 plays a central role in inhibiting colon cells from becoming cancerous. The study, led by Thirumala-Devi Kanneganti, Ph.D., ...

Common food additive promotes colon cancer in mice

November 7, 2016
Emulsifiers, which are added to most processed foods to aid texture and extend shelf life, can alter intestinal bacteria in a manner that promotes intestinal inflammation and colorectal cancer, according to a new study.

Study identifies key protein that contributes to colitis

December 4, 2015
The cause of Ulcerative Colitis, a debilitating disease of the intestine, is unclear. A Yale-led study has illuminated the role of a protein that plays a key part in the development of the condition. The research, published ...

Study advances understanding of colon cancer and colitis

May 17, 2016
Inflammatory bowel disease (IBD), of which Crohn's disease and ulcerative colitis are the main types, is on the increase in the United States, affecting more than 1.6 million people and explaining perhaps the increase in ...

Recommended for you

No dye: Cancer patients' gray hair darkened on immune drugs

July 21, 2017
Cancer patients' gray hair unexpectedly turned youthfully dark while taking novel drugs, and it has doctors scratching their heads.

Shooting the achilles heel of nervous system cancers

July 20, 2017
Virtually all cancer treatments used today also damage normal cells, causing the toxic side effects associated with cancer treatment. A cooperative research team led by researchers at Dartmouth's Norris Cotton Cancer Center ...

Molecular changes with age in normal breast tissue are linked to cancer-related changes

July 20, 2017
Several known factors are associated with a higher risk of breast cancer including increasing age, being overweight after menopause, alcohol intake, and family history. However, the underlying biologic mechanisms through ...

Immune-cell numbers predict response to combination immunotherapy in melanoma

July 20, 2017
Whether a melanoma patient will better respond to a single immunotherapy drug or two in combination depends on the abundance of certain white blood cells within their tumors, according to a new study conducted by UC San Francisco ...

Discovery could lead to better results for patients undergoing radiation

July 19, 2017
More than half of cancer patients undergo radiotherapy, in which high doses of radiation are aimed at diseased tissue to kill cancer cells. But due to a phenomenon known as radiation-induced bystander effect (RIBE), in which ...

Definitive genomic study reveals alterations driving most medulloblastoma brain tumors

July 19, 2017
The most comprehensive analysis yet of medulloblastoma has identified genomic changes responsible for more than 75 percent of the brain tumors, including two new suspected cancer genes that were found exclusively in the least ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.