TET1 protein helps prevent congenital defects and late-onset diseases

May 18, 2017, KU Leuven

In the earliest stages of embryonic development, a protein known as TET1 may be the factor that tips the balance toward health or disease. The first evidence for this vital role of TET1 is presented in Nature Genetics by researchers from KU Leuven (University of Leuven), Belgium. They found that TET1 is necessary to prevent congenital defects such as spina bifida as well as mental retardation and cancer later in life.

Every mammal starts off as a cluster of cells with the same genetic material. As the embryo develops, this DNA is used to generate the cell-specific building blocks for lungs, the brain, and every other tissue and organ in the body. To determine which genetic information is needed for a specific cell—and when—chemical marks or methyl groups are added to the DNA at specific positions. Erasing a mark often switches on a specific message, whereas adding a mark usually switches it off. This determines how proteins interpret the .

In 2009, a team of researchers at Harvard University demonstrated that the TET protein family erases marks from the DNA and is thus essential for the proper of the embryo. The precise role of the three family members, however, remained a mystery.

Professor Kian Koh from the KU Leuven Department of Development and Regeneration, who was a co-lead author of the Harvard study, has now been able to shed light on the role of the first family member, TET1. He found that the protein plays a vital role in the embryonic stage that precedes the development of individual organs.

"TET1 is the only TET protein found in detectable amounts at this stage," Professor Koh explains. "This suggests that it has a unique function. To find out which one, we created mice that lack TET1."

"The prevents the incorrect marking of DNA," Professor Koh continues. "We found that the loss of TET1 may lead to severe defects that cause the brain or spinal cord to develop outside the body. The causes of such defects, including , are very complex, of course, but our findings suggest that TET1 plays a pivotal role in preventing them."

But incorrect marking of the DNA may also cause late-onset diseases. "This is because TET1 is necessary to control the speed of . If the timing for the start of a specific stage is off, the foetus may die. And if it survives, the marks on the DNA may still be improperly erased, possibly leading to and cancer later in life."

These findings open up new avenues of research into the origin and prevention of both congenital disorders and various late-onset diseases.

Explore further: Enzyme may be key to cancer progression in many tumors

More information: Rita Khoueiry et al, Lineage-specific functions of TET1 in the postimplantation mouse embryo, Nature Genetics (2017). DOI: 10.1038/ng.3868

Related Stories

Enzyme may be key to cancer progression in many tumors

November 26, 2014
Mutations in the KRAS gene have long been known to cause cancer, and about one third of solid tumors have KRAS mutations or mutations in the KRAS pathway. KRAS promotes cancer formation not only by driving cell growth and ...

TET proteins drive early neurogenesis

December 7, 2016
The fate of stem cells is determined by series of choices that sequentially narrow their available options until stem cells' offspring have found their station and purpose in the body. Their decisions are guided in part by ...

MicroRNA pathway could lead to new avenues for leukemia treatment

April 26, 2016
Cancer researchers at the University of Cincinnati (UC) have found a particular signaling route in microRNA (miR-22) that could lead to targets for acute myeloid leukemia, the most common type of fast-growing cancer of the ...

The TET1 enzyme steers us through fetal development and fights cancer

April 13, 2011
To ensure normal fetal development and prevent disease, it is crucial that certain genes are on or off in the right time intervals. Researchers in Professor Kristian Helin's group at BRIC, University of Copenhagen, have now ...

Recommended for you

The role of 'extra' DNA in cancer evolution and therapy resistance

April 23, 2018
Glioblastoma (GBM) is the most common and aggressive form of brain cancer. Response to standard-of-care treatment is poor, with a two-year survival rate of only 15 percent. Research is beginning to provide a better understanding ...

Variants in non-coding DNA contribute to inherited autism risk

April 19, 2018
In recent years, researchers have firmly established that gene mutations appearing for the first time, called de novo mutations, contribute to approximately one-third of cases of autism spectrum disorder (ASD). In a new study, ...

Researchers discover link between gene variation and language

April 18, 2018
What shapes the basic features of a language?

Natural selection still at work in humans

April 18, 2018
Evolution has shaped the human race, with University of Queensland researchers finding signatures of natural selection in the genome that influence traits associated with fertility and heart function.

Gene therapy for beta-thalassemia safe, effective in people

April 18, 2018
In a powerful example of bench-to-bedside science showing how observations made in the lab can spark life-altering therapies in clinic, an international team of clinician-investigators has announced that gene therapy for ...

Potential lines of attack against prostate cancer

April 17, 2018
Researchers from The University of East Anglia (UEA) have contributed to the world's largest study into genes that drive prostate cancer – identifying 80 molecular weaknesses that could be targeted by drugs to treat the ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.