How a chemo drug can help cancer spread from the breast to the lungs

August 7, 2017, The Ohio State University

COLUMBUS, Ohio -The very same treatment that thwarts breast cancer has a dark side—it can fuel the spread of the disease to the lungs.

Researchers at The Ohio State University studied the cascade of events that lead to metastatic and found clues to why it happens, opening up the possibility of one day interfering with the medication's downsides while preserving its cancer-fighting properties in breast tissue.

The front-line chemotherapy drug paclitaxel sets off a variety of molecular-level changes that allow to escape from the tumor. At the same time, it creates an environment in the lung that is more hospitable to the cancer cells, facilitating the spread of the disease, the researchers found in a of breast cancer.

The study, which appears in the journal Proceedings of the National Academy of Sciences, includes an analysis of data from women with breast cancer that suggest the findings from mouse models could be relevant to breast cancer metastasis in humans.

"That chemotherapy can paradoxically promote is an emerging revelation in cancer research. However, a molecular-level understanding of this devastating effect is not clear," said Tsonwin Hai, the study's senior author and a professor of biological chemistry and pharmacology.

The changes in both the tumor and the lung documented in the study depend on a gene called Atf3, which is turned on by stress. In human data, the researchers found higher Atf3 gene expression in patients who had chemotherapy than those who did not.

"This gene seems to do two things at once: essentially help distribute the 'seeds' (cancer cells) and fertilize the 'soil' (the lung)," Hai said.

First, the chemo appears to send signals to increase the number of molecular doors through which the cancer cells can escape from the primary tumor into the bloodstream, freeing them to travel to other organs, the researchers found.

"I think it's an active process—a biological change in which the cancer cells are beckoned to escape into the blood—rather than a passive process in which the cancer cells get into the bloodstream because of leaky vessels," said Hai, a member of The Ohio State University Comprehensive Cancer Center.

This finding is bolstered by another recent study conducted at the Albert Einstein College of Medicine and published in Science Translational Medicine, which showed a similar result using imaging techniques to observe the tumor in mice, Hai said.

Second, the Ohio State researchers found that, beyond aiding cancer cell escape, paclitaxel creates a cascade of events that makes the tissue environment in the lung fertile ground for circulating cancer cells. "There are signals that help cancer cells enter the lungs and set up shop, that make the environment more immunologically tolerant to cancer cells," Hai said.

A molecular-level understanding of why chemotherapy sometimes increases risk of is in the early stages, Hai said.

She said it's important to recognize that the cancer cells in the study's mouse model are very aggressive and that it would be interesting to test whether paclitaxel also enhances the escape of at earlier stages in cancer progression.

Hai cautioned that much more work is required before extrapolating the findings in mice to human cancer treatment.

"At this point, what our study and the recent literature on chemotherapy taught us is that it is prudent to keep our mind open, realizing that chemo can help treat cancer, but at the same time may increase the possibility of the spread of that cancer," she said.

What set their study apart from other research in this area is the identification of the stress gene Atf3. They showed that paclitaxel—a stressor—exerts its pro-cancer effect at least in part by turning on Atf3.

"It's possible there could be a treatment given in conjunction with the chemo that would inhibit this problem by dampening the effect of the stress gene Atf3," Hai said.

And that will be a focus of Hai's work in this area going forward, she said.

Explore further: Neoadjuvant chemotherapy induces breast cancer metastasis through a TMEM-mediated mechanism

More information: Yi Seok Chang el al., "Stress-inducible gene Atf3 in the noncancer host cells contributes to chemotherapy-exacerbated breast cancer metastasis," PNAS (2017). www.pnas.org/cgi/doi/10.1073/pnas.1700455114

Related Stories

Neoadjuvant chemotherapy induces breast cancer metastasis through a TMEM-mediated mechanism

July 6, 2017
(Medical Xpress)—A team of researchers working at the Albert Einstein College of Medicine in the U.S. has found evidence that suggests administering chemotherapy to breast cancer patients prior to surgery can put them at ...

The stress and cancer link: 'Master switch' stress gene enables cancer's spread

August 22, 2013
In an unexpected finding, scientists have linked the activation of a stress gene in immune-system cells to the spread of breast cancer to other parts of the body.

New bone-in technique tests therapies for breast cancer metastasis

April 21, 2017
A new laboratory technique developed by researchers at Baylor College of Medicine and other institutions can rapidly test the effectiveness of treatments for life-threatening breast cancer metastases in bone. The study appears ...

Low doses of common cancer drug may promote cancer spread

June 22, 2016
New research indicates that paclitaxel, which is the most commonly used chemotherapy for breast cancer, suppresses tumors when given at a certain dosage, but at low doses, it actually promotes cancer spread to the liver.

Scientists identify chain reaction that shields breast cancer stem cells from chemotherapy

February 22, 2017
Working with human breast cancer cells and mice, researchers at Johns Hopkins say they have identified a biochemical pathway that triggers the regrowth of breast cancer stem cells after chemotherapy.

ALK1 protein may play a role in breast cancer metastasis

June 15, 2015
Breast cancer patients with high levels of the protein activin-like receptor kinase (ALK1) in the blood vessels of their tumors were more likely to develop metastatic disease. This makes inhibition of the ALK1 pathway a possible ...

Recommended for you

Sequencing genomes of Nigerian women could help prevent many lethal breast cancers

August 21, 2018
For the first time, DNA contributed by Sub-Saharan African women has been thoroughly evaluated with innovative genomics technology in an effort to understand the genetic bases for breast cancer in African populations.

First in-depth profile of CAR T-cell signals suggests how to improve immunotherapy

August 21, 2018
CAR T-cell therapy, which reprograms immune cells to fight cancer, has shown great promise in people with some blood cancers who have not responded to other treatments. But until now, the underlying biological pathways enabling ...

Scientists take step toward new, targeted lung cancer treatment

August 21, 2018
Scientists have identified a key molecular player in a subtype of lung cancer which could lead to a new way to tackle the disease, according to research published in Nature Communications.

New compound advances into Phase 1 trial for pancreatic cancer

August 21, 2018
A compound discovered at Sanford Burnham Prebys Medical Discovery Institute (SBP) has advanced into a Phase 1 trial for metastatic pancreatic cancer. Called CEND-1 (scientifically known as iRGD), the compound was exclusively ...

Simple test could identify bladder cancer patients who won't respond to immunotherapy

August 21, 2018
Patients who are unlikely to benefit from a commonly used immunotherapy for bladder cancer could be identified by a simple blood test, according to researchers at Brighton and Sussex Medical School (BSMS).

Annual pap test a 'thing of the past?'

August 21, 2018
The United States Preventive Services Task Force (USPSTF) has released new recommendations on screening for cervical cancer. These latest recommendations continue the trend of decreasing participant burden by lengthening ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.