Memory decline after head injury may be prevented by slowing brain cell growth

September 15, 2017, Rutgers University
Credit: copyright American Heart Association

The excessive burst of new brain cells after a traumatic head injury that scientists have traditionally believed helped in recovery could instead lead to epileptic seizures and long-term cognitive decline, according to a new Rutgers New Jersey Medical School study.

In the September issue of Stem Cell Reports, Viji Santhakumar, associate professor in the department of Pharmacology, Physiology and Neuroscience, and her colleagues, challenge the prevailing assumption by scientists in the field that excessive neurogenesis (the birth of new brain cells) after is advantageous.

"There is an initial increase in birth of new neurons after a brain injury but within weeks, there is a dramatic decrease in the normal rate at which neurons are born, depleting brain cells that under normal circumstances should be there to replace damaged cells and repair the brain's network," said Santhakumar. "The excess new neurons lead to and could contribute to "

In the United States an estimated 1.7milllion people sustain a TBI each year, making the condition a major cause of death and disability. Symptoms can include impaired thinking or memory, personality changes and depression and vision and hearing problems as well as epilepsy. About 80 percent of those who develop epilepsy after a brain injury have seizures within the first two years after the damage occurs.

Santhakumar said while researchers who study epilepsy have started to look more closely at how preventing excessive neurogenesis after brain injury could prevent seizures, neuroscientists have traditionally viewed the process as helpful to overall brain recovery.

Studying laboratory rats, Rutgers scientists found, however, that within a month after experimental brain injury, the number of new brain cells declined dramatically, below the numbers of new neurons that would have been detected if an injury had not occurred.

When scientists were able to prevent the excessive neurogenesis which occurs within days of the injury with a drug similar to one under trial for chemotherapy treatments, the rate of birth of new brain cells went back to normal levels and risk for seizures was reduced.

"That's why we believe that limiting this process might be beneficial to stopping seizures after ," she said.

While the regenerative capability of brain , in the hippocampus - the part of the responsible for learning and memory - slows down as part of the aging process, the Rutgers scientists determined that the process that occurred after a head injury was related to injury and not age.

"It is normal for the birth of new neurons to decline as we age," said Santhakumar. "But what we found in our study was that after a head injury the decline seems to be more rapid."

Explore further: Scientists identify mechanisms to reduce epileptic seizures following TBI

Related Stories

Scientists identify mechanisms to reduce epileptic seizures following TBI

December 17, 2015
UT Southwestern Medical Center researchers have found that halting production of new neurons in the brain following traumatic brain injury can help reduce resulting epileptic seizures, cognitive decline, and impaired memory.

Traumatic brain injuries may be helped with drug used to treat bipolar disorder

May 8, 2017
A drug used to treat bipolar disorder and other forms of depression may help to preserve brain function and prevent nerve cells from dying in people with a traumatic brain injury, according to a new Rutgers University study.

Mild brain cooling after head injury prevents epileptic seizures in lab study

December 21, 2012
(Medical Xpress)—Mild cooling of the brain after a head injury prevents the later development of epileptic seizures, according to an animal study reported this month in the  Annals of Neurology.

Study examines drowning-induced brain injury in children

August 1, 2017
A new study indicates that children who develop brain injury due to non-fatal drowning often experience severe motor deficits but maintain relatively intact perceptual and cognitive capabilities.

Cooling may prevent trauma-induced epilepsy

February 21, 2013
(Medical Xpress)—In the weeks, months and years after a severe head injury, patients often experience epileptic seizures that are difficult to control. A new study in rats suggests that gently cooling the brain after injury ...

Working towards a drug to limit brain injury

March 16, 2017
UNSW medical researchers in the Translational Neuroscience Facility are partnering with a drug development company to discover new treatments to limit the damage of traumatic brain injury.

Recommended for you

Research shows signalling mechanism in the brain shapes social aggression

October 19, 2018
Duke-NUS researchers have discovered that a growth factor protein, called brain-derived neurotrophic factor (BDNF), and its receptor, tropomyosin receptor kinase B (TrkB) affects social dominance in mice. The research has ...

Good spatial memory? You're likely to be good at identifying smells too

October 19, 2018
People who have better spatial memory are also better at identifying odors, according to a study published this week in Nature Communications. The study builds on a recent theory that the main reason that a sense of smell ...

How clutch molecules enable neuron migration

October 19, 2018
The brain can discriminate over 1 trillion odors. Once entering the nose, odor-related molecules activate olfactory neurons. Neuron signals first accumulate at the olfactory bulb before being passed on to activate the appropriate ...

Scientists discover the region of the brain that registers excitement over a preferred food option

October 19, 2018
At holiday buffets and potlucks, people make quick calculations about which dishes to try and how much to take of each. Johns Hopkins University neuroscientists have found a brain region that appears to be strongly connected ...

Gene plays critical role in noise-induced deafness

October 19, 2018
In experiments using mice, a team of UC San Francisco researchers has discovered a gene that plays an essential role in noise-induced deafness. Remarkably, by administering an experimental chemical—identified in a separate ...

Weight loss success linked with active self-control regions of the brain

October 18, 2018
New research suggests that higher-level brain functions have a major role in losing weight. In a study among 24 participants at a weight-loss clinic, those who achieved greatest success in terms of weight loss demonstrated ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.