Study reveals new mechanisms of cell death in neurodegenerative disorders

November 22, 2017, King's College London

Researchers at King's College London have discovered new mechanisms of cell death, which may be involved in debilitating neurodegenerative disorders, such as Alzheimer's disease and Parkinson's disease.

This novel research, published today in Current Biology, could lead to new therapeutic approaches for treating or delaying the progression of that are currently incurable, if the findings are expanded. Many current treatments for neurodegenerative actually aim to enhance cell clearance, which may worsen rather than improve neurodegenerative symptoms, making the need for new treatment strategies an urgent priority.

Approximately 10 million people in the UK live with a neurological condition, with dementia alone estimated to cost the economy more than £10.5 billion per year in health and social care. Neurodegenerative conditions are characterised by a progressive loss of function, so that patients start to lose control of their movement, balance, memory and speech - similar to what happens when people have strong alcohol intoxication.

However, it is not currently known how or why these lose function, particularly in the terminal stage of these illnesses.

Using two animal models of a , the researchers were able to find a similar dysfunctional process occurring in fruit flies and mice, as well as human , meaning that their findings are likely to be replicated in human brains. Specifically, they found that in this condition nerve cells in certain areas of the brain become stalled and are no longer able to remove toxins or old and dysfunctional brain cells, which is a naturally occurring process known as . Autophagy is essentially how the brain breaks down cellular waste to elementary pieces, which are then recycled and used to construct and renovate brain cells.

The persistent stall in autophagy means the nerve cells are unable to 'clean' the brain and this results in a build up of toxins. Essentially the cells become confused and begin pushing out essential inner components rather than waste, leading to a loss of function and ultimately their death.

This new insight into how nerve cells might die from self-digestion has important implications for therapeutic approaches targeting autophagy. While current treatments aim to enhance cell clearance, in this study the authors were able to disrupt specific processes that interfere with cell clearance.

Dr Olga Baron, first author from the Institute of Psychiatry, Psychology & Neuroscience (IoPPN) at King's College London, said 'Studies like ours, looking at rare genetic conditions, can be very powerful in finding new mechanisms. We are currently looking into whether we can replicate the same findings for other disorders where autophagy has been shown to malfunction, like Alzheimer's disease and motor neurone disease.'

Dr Manolis Fanto, IoPPN, King's College London, senior author of the study said 'Autophagy is important for all degenerative neurological conditions and what is emerging from our study is how the blockage of autophagy kills in a new way, not described before.'

Explore further: Scientists reveal how inflammation affects the life of brain cells

Related Stories

Scientists reveal how inflammation affects the life of brain cells

October 10, 2017
New King's College London research reveals how blood inflammation affects the birth and death of brain cells, which could offer new treatment targets for antidepressants.

A pathogenic mechanism in motoneuron disease

November 2, 2017
Motor neurons are the nerves that send impulses to the muscles to generate movement. Damage of these neurons can cause very diverse diseases, for example spinal muscular atrophy in children or adult amyotrophic lateral sclerosis.

Gut response to fluid flow

October 27, 2017
Flow of fluids through the gut, such as milk from an infant's diet, generates a shear stress on cells lining the intestine. Ken Lau, Ph.D., and colleagues have demonstrated that microvilli – finger-like membrane protrusions ...

Agent clears toxic proteins and improves cognition in neurodegeneration models

July 16, 2017
Researchers have found cell receptors abnormally overexpressed in post-mortem brains of those with Parkinson's and Alzheimer's diseases, and that they can be inhibited in animal models to clear toxic protein buildup, reduce ...

Gene could hold key to treating Parkinson's disease

October 19, 2015
Researchers at King's College London have identified a new gene linked to nerve function, which could provide a treatment target for 'switching off' the gene in people with neurodegenerative diseases such as Parkinson's disease.

Communication between neighboring cells triggers autophagy

June 29, 2017
An immune-related protein deployed between neighboring cells in Drosophila plays an essential role in the cell degradation process known as autophagy, according to new research by Eric H. Baehrecke, PhD, at UMass Medical ...

Recommended for you

Switch discovered to convert blood vessels to blood stem cells in embryonic development

March 20, 2018
A switch has been discovered that instructs blood vessel cells to become blood stem cells during embryonic development in mice. Using single-cell technology, researchers from the Wellcome Sanger Institute in Cambridge and ...

Scientists discover new causes of cellular decline in prematurely aging kids

March 19, 2018
In a recent paper published in Cell Reports, Saint Louis University researchers have uncovered new answers about why cells rapidly age in children with a rare and fatal disease. The data points to cellular replication stress ...

Don't blame adolescent social behavior on hormones

March 19, 2018
Reproductive hormones that develop during puberty are not responsible for changes in social behavior that occur during adolescence, according to the results of a newly published study by a University at Buffalo researcher.

Stem cells treat macular degeneration

March 19, 2018
In July 2015, 86-year-old Douglas Waters developed severe age-related macular degeneration (AMD). He struggled to see things clearly, even when up close.

Measuring neutrophil motility could lead to accurate sepsis diagnosis

March 19, 2018
A microfluidic device developed by Massachusetts General Hospital (MGH) investigators may help solve a significant and persistent challenge in medicine—diagnosing the life-threatening complication of sepsis. In their paper ...

Democratizing science: Researchers make neuroscience experiments easier to share, reproduce

March 16, 2018
Over the past few years, scientists have faced a problem: They often cannot reproduce the results of experiments done by themselves or their peers.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.