How rogue immune cells cross the blood-brain barrier to cause multiple sclerosis

November 21, 2017, University of Illinois at Chicago
A network of capillaries supply brain cells with nutrients. Tight seals in their walls keep blood toxins—and many beneficial drugs—out of the brain. Credit: From: Bridging the Blood-Brain Barrier: New Methods Improve the Odds of Getting Drugs to the Brain Cells That Need Them Ferber D PLoS Biology Vol. 5, No. 6, e169 doi:10.1371/journal.pbio.0050169

Drug designers working on therapeutics against multiple sclerosis should focus on blocking two distinct ways rogue immune cells attack healthy neurons, according to a new study in the journal Cell Reports.

In multiple sclerosis, immune cells degrade the insulation that protects neurons and allows them to signal to one another, but little is known about how immune cells penetrate the to get to neurons. Researchers led by Sarah Lutz, University of Illinois at Chicago College of Medicine while she was a post-doctoral fellow of Dritan Agalliu at Columbia University; and Sunil Gandhi, University of California, Irvine, have uncovered two different ways immune cells gain access to neurons and wreak their havoc.

Multiple sclerosis is a neurodegenerative inflammatory disease that affects approximately 2.5 million people worldwide. Immune cells turn against the body and cause damage to the myelin sheath, which encases neurons like the insulation on a wire. Loss of myelin interferes with the transmission of signals along the nerve fibers and impairs motor function, including walking and speech. Symptoms, which can be sporadic or progressive, range from mild to debilitating.

While researchers have known that two different kinds of immune cells, Th1 and Th17 lymphocytes, are involved in degrading myelin around neurons in multiple sclerosis, they didn't know exactly how these cells crossed the blood-brain barrier to access neurons.

The blood-brain barrier is a bit of a misnomer. It not only protects the brain, but also the spine, and refers to the fact that blood vessels that supply the brain and spine are virtually impermeable because the cells that make up those blood vessels—called endothelial cells—are bolted tightly together by protein complexes called tight junctions. This prevents certain chemicals, harmful microbes and cells that circulate in the blood from gaining access to the brain and spine. In blood vessels that supply other organs of the body, endothelial cells are more loosely bound to one another and the connections can be adjusted to allow for the exchange of molecules and cells from the bloodstream into tissues and vice versa.

"In autoimmune diseases like multiple sclerosis, immune cells that enter the brain and spinal cord cause disease," said Lutz, assistant professor of anatomy and cell biology in the UIC College of Medicine and the lead author of the paper. "A better understanding of how these cells cross the blood-brain barrier will aid our efforts to develop specific therapies to keep them out."

To explore how Th1 and Th17 gain access to neurons in multiple sclerosis, Lutz and her colleagues looked at the blood-brain barrier in mice with experimental autoimmune encephalomyelitis—a mouse version of multiple .

They genetically labeled blood vessel endothelial cell tight junctions with a fluorescent protein to examine if and how tight junctions are involved in autoimmune encephalomyelitis in vivo in their mice. The researchers observed that the tight junctions were significantly deteriorated in the presence of Th17 cells, and that this took place early in the onset of disease. Approximately three days later in the disease process, Lutz and colleagues found that Th1 cells were accessing and degrading myelin and neurons—but these cells did not pass through tight junctions like the Th17 cells did. Instead, the circulating Th1 cells got to neurons by going through the blood vessel endothelial cells using specialized cell membrane structures called caveolae. Caveolae are small pits or "caves" found on the surface of many cell types and help facilitate the passage of various molecules and cells into and/or through cells. In mice with autoimmune encephalomyelitis bred to lack caveolae, the researchers found almost no Th1 cells in the brain and spinal cord. They determined that caveolae on that make up are required to help ferry Th1 cells through the blood-brain barrier.

"This is the first time we have ever seen, in live animals in real-time, the different means by which these two cell types gain access to myelin and nerves," said Lutz. "Now that we know how these get to , drugs or small molecules can be designed that interfere with or block each of these processes to help treat and possibly prevent ."

Dae Hwan Kim, Carl V. L. Olson, Kyle Ellefsen, and Jennifer Bates, University of California, Irvine; and Julian Smith, Columbia University Medical Center, New York, are co-authors on the paper.

Explore further: Blood-clotting protein prevents repair in the brain

More information: Cell Reports (2017). DOI: 10.1016/j.celrep.2017.10.094 , http://www.cell.com/cell-reports/fulltext/S2211-1247(17)31574-7

Related Stories

Blood-clotting protein prevents repair in the brain

November 2, 2017
Picture a bare wire, without its regular plastic coating. It's exposed to the elements and risks being degraded. And, without insulation, it may not conduct electricity as well as a coated wire. Now, imagine this wire is ...

What is the blood-brain barrier and how can we overcome it?

April 6, 2017
The brain is precious, and evolution has gone to great lengths to protect it from damage. The most obvious is our 7mm thick skull, but the brain is also surrounded by protective fluid (cerebrospinal – of the brain and spine) ...

An antibody-based drug for multiple sclerosis

July 20, 2016
Inserm Unit U919, directed by Prof. Denis Vivien ("Serine Proteases and Physiopathology of the Neurovascular Unit") has developed an antibody with potential therapeutic effects against multiple sclerosis. The study, directed ...

New biomarkers of multiple sclerosis pathogenesis

May 22, 2017
Multiple sclerosis (MS) is a chronic debilitating inflammatory disease targeting the brain. The pathogenesis of MS remains largely unknown, though brain tissue damage in MS is likely due to immune cells attacking myelin basic ...

How recurrent strep A infections affect the brain

December 15, 2015
Researchers have discovered how immune cells triggered by recurrent Strep A infections enter the brain, causing inflammation that may lead to autoimmune neuropsychiatric disorders in children. The study, performed in mice, ...

The immune system of mice is implicated in helping malaria to move from the blood to the brain

May 6, 2016
By studying malaria in mice, three A*STAR researchers have discovered how malaria parasites in the bloodstream can affect the brain, causing a life-threatening condition called cerebral malaria.

Recommended for you

LincRNAs identified in human fat tissue

June 21, 2018
A large team of researchers from the U.S. and China has succeeded in identifying a number of RNA fragments found in human fat tissue. In their paper published in the journal Science Translational Medicine the group describes ...

Scientists solve the case of the missing subplate, with wide implications for brain science

June 21, 2018
The disappearance of an entire brain region should be cause for concern. Yet, for decades scientists have calmly maintained that one brain area, the subplate, simply vanishes during the course of human development. Recently, ...

Key molecule of aging discovered

June 21, 2018
Every cell and every organism ages sooner or later. But why is this so? Scientists at the German Cancer Research Center in Heidelberg have now discovered for the first time a protein that represents a central switching point ...

Compound made inside human body stops viruses from replicating

June 20, 2018
The newest antiviral drugs could take advantage of a compound made not by humans, but inside them. A team of researchers has identified the mode of action of viperin, a naturally occurring enzyme in humans and other mammals ...

Long-term estrogen therapy changes microbial activity in the gut, study finds

June 20, 2018
Long-term therapy with estrogen and bazedoxifene alters the microbial composition and activity in the gut, affecting how estrogen is metabolized, a new study in mice found.

Research reveals zero proof probiotics can ease your anxiety

June 20, 2018
If you're expecting probiotics to reduce your anxiety, it might be time to put down that yogurt spoon—or supplement bottle—and call a professional instead.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

nanotech_republika_pl
not rated yet Nov 21, 2017
Ok, but how did the caveolae help Th1 cells to convenience the endothelial cells to let them through between them?

Also, isn't the BBB mostly based on the supporting cells, like astrocytes, sealing the spaces between the endothelial cells in the capillary walls rather than just tight junctions of the endothelial cells?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.