Important tumor suppressor discovered in immune cells

December 6, 2017, Technical University Munich
With their current study, Prof. Jürgen Ruland (right) and Dr. Tim Wartewig found a new starting point for therapies against lymphoma. Credit: Andreas Heddergott / Technical University of Munich

A team from Technical University of Munich has discovered an "emergency shut-off switch" in immune system T cells. Their results could lead to new therapies against T cell non-Hodgkin's lymphoma triggered by defective immune cells.

In the body, T cells are usually responsible for detecting and killing . However, problems can arise when a T cell itself develops a defect in its genome. If the defect affects areas of the genome responsible for , referred to as oncogenes, the T cell itself can become an uncontrollably dividing cell. In addition, the T cell, an important part of the body's defense against cancer, fails.

This is exactly what occurs in T cell non-Hodgkin's lymphoma. This aggressive form of lymphoma has a very low rate of successful treatment and afflicts approximately one out of every 100,000 persons in Germany. Prof. Jürgen Ruland, Director of the TUM Institute for Clinical Chemistry and Pathobiochemistry is working together with his team to understand the molecular mechanisms of these cancers in order to treat them more effectively.

In their new study, currently published in the journal Nature, the scientists were able to show that the defective T cells have an emergency shut-off switch, referred to as a . They ascertained that the protein PD-1 can turn off defective T cells at an early stage and thus prevent them from becoming tumor cells. The researchers first discovered this function of PD-1 in a mouse model for T cell non-Hodgkin's lymphoma and were also able to explain the mechanism: PD-1 is activated by defects in genes for cell growth, known as oncogenes, and then suppresses the effect of these genes using additional proteins. Thus, it functions as a shut-off switch to prevent the uncontrolled growth of defective T cells.

The scientists also successfully resolved the question of why many T cell non-Hodgkin's lymphomas are so aggressive, in spite of this protective function. They investigated genetic data sets from 150 patients: "Based on our previous results, we intentionally focused closely on PD-1. In individual groups more than 30 percent of the patients exhibited changes in the regions of the genome that interfered with the production of PD-1. This has disastrous consequences in the tumor—PD-1 no longer functions as an 'emergency shut-off' for them. The diseased T can reproduce uncontrollably," says Tim Wartewig, lead author of the study.

"These patients could be helped by medications that reverse the loss of PD-1 signaling and thereby destroy the . This type of medication already exists for other forms of cancer. In our opinion, use with T cell non-Hodgkin's should also be considered," says Jürgen Ruland. The scientists therefore recommend investigating individual differences in tumors before making decisions about which medication is to be administered.

Explore further: Genetic link found between the immune system and lymphoma

More information: Tim Wartewig et al, PD-1 is a haploinsufficient suppressor of T cell lymphomagenesis, Nature (2017). DOI: 10.1038/nature24649

Related Stories

Genetic link found between the immune system and lymphoma

December 1, 2017
People who inherit genetic changes which alter the function of their immune system are at increased risk of developing Hodgkin lymphoma, a major new study reports.

New disease mechanism discovered in lymphoma

December 18, 2014
Programmed cell death is a mechanism that causes defective and potentially harmful cells to destroy themselves. It serves a number of purposes in the body, including the prevention of malignant tumor growth. Now, researchers ...

Researchers identify genetic drivers of most common form of lymphoma

October 5, 2017
Lymphoma is the most common blood cancer, but the diagnosis belies a wildly diverse and little understood genetic foundation for the disease that hampers successful treatment.

The gene behind follicular lymphoma

June 28, 2017
Follicular lymphoma is an incurable cancer that affects over 200,000 people worldwide every year. A form of non-Hodgkin lymphoma, follicular lymphoma develops when the body starts making abnormal B-cells, which are white ...

Combination immune therapy shows promise against Hodgkin lymphoma

December 5, 2016
The combination of two new drugs that harness the body's immune system is safe and effective, destroying most cancer cells in 64 percent of patients with recurrent Hodgkin lymphoma, according to the results of an early-phase ...

Cancer researchers look at resistance to targeted therapy in mantle cell lymphoma

June 14, 2017
Today some patients suffering with mantle cell lymphoma, a type of blood cancer, can be treated with a pill called Ibrutinib, forgoing conventional chemotherapy. However, many are developing a resistance to this treatment. ...

Recommended for you

Study tracks evolutionary transition to destructive cancer

February 23, 2018
Evolution describes how all living forms cope with challenges in their environment, as they struggle to persevere against formidable odds. Mutation and selective pressure—cornerstones of Darwin's theory—are the means ...

Researchers use a molecular Trojan horse to deliver chemotherapeutic drug to cancer cells

February 23, 2018
A research team at the University of California, Riverside has discovered a way for chemotherapy drug paclitaxel to target migrating, or circulating, cancer cells, which are responsible for the development of tumor metastases.

Lab-grown 'mini tumours' could personalise cancer treatment

February 23, 2018
Testing cancer drugs on miniature replicas of a patient's tumour could help doctors tailor treatment, according to new research.

An under-the-radar immune cell shows potential in fight against cancer

February 23, 2018
One of the rarest of immune cells, unknown to scientists a decade ago, might prove to be a potent weapon in stopping cancer from spreading in the body, according to new research from the University of British Columbia.

Putting black skin cancer to sleep—for good

February 22, 2018
An international research team has succeeded in stopping the growth of malignant melanoma by reactivating a protective mechanism that prevents tumor cells from dividing. The team used chemical agents to block the enzymes ...

Cancer risk associated with key epigenetic changes occurring through normal aging process

February 22, 2018
Some scientists have hypothesized that tumor-promoting changes in cells during cancer development—particularly an epigenetic change involving DNA methylation—arise from rogue cells escaping a natural cell deterioration ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.