Researchers map out genetic 'switches' behind human brain evolution

January 11, 2018, University of California, Los Angeles
UCLA researchers mapped the genetic on/off switches driving neurogenesis in the brain and shaping the expansion of human cortex. The image shows schematics of slices of the mouse, macaque and human brain to scale. The interior of the slices is represented by a mouse brain. Strands of chromatin, where the on/off switches reside, are interlacedacross the brains. Credit: Luis de la Torre-Ubieta/UCLA Health

UCLA researchers have developed the first map of gene regulation in human neurogenesis, the process by which neural stem cells turn into brain cells and the cerebral cortex expands in size. The scientists identified factors that govern the growth of our brains and, in some cases, set the stage for several brain disorders that appear later in life.

The human differs from that of mice and monkeys because of its large cerebral cortex. The organ's most highly developed part, the cerebral cortex is responsible for thinking, perceiving and sophisticated communication. Scientists are just beginning to understand the molecular and cellular mechanisms that drive the growth of the and the major role they play in human cognition.

Brain development is guided by the expression of genes in certain brain regions or cell types, as well as during specific time frames. Gene expression, the process by which the instructions in our DNA are converted into a functional product, such as a protein, is regulated at many levels by segments of DNA acting as on-off switches at key moments. But until now, there was no map that described the activity and location of these switches on a chromosome during .

Using a molecular biology technique called ATAC-seq, UCLA researchers mapped regions of the genome that are active during neurogenesis. They combined that data with from those brain regions. The researchers also used previously published data about the folding patterns of chromosomes. Chromosomal folding patterns affect how genetic information is encoded. The combined data helped them identify regulatory elements for key genes in neurogenesis. One gene, called EOMES/Tbr2, when switched off, is associated with severe brain malformations.

The researchers confirmed the roles of the targeted genes by using CRISPR technology, a technique by which pieces of DNA in the cells can be removed, to edit out a subset of regulatory switches and then assess their effect on and neurogenesis.

Researchers found that some psychiatric disorders that develop later in life, such as schizophrenia, depression, ADHD and neuroticism, have their origins during the earliest stages of brain growth in the fetus. Even a person's future intellectual capabilities are set in motion during neurogenesis, researchers said.

Researchers also discovered a major mechanism that accounts for the human being larger than it is in non-human primates. They identified a genome sequence that alters expression of a fibroblast growth factor receptor that regulates important biological processes including cell multiplication and division, and that assigns specific tasks to cells. The genome sequence is more active in humans than in mouse and , which helps explain why human brains are larger.

The study's first author is Luis de la Torre-Ubieta of UCLA and the senior author is Dr. Daniel Geschwind of UCLA. The other authors are Jason Stein, Hyejung Won, Carli Opland and Daning Lu, all of UCLA; and Dan Liang of the University of North Carolina, Chapel Hill.

The study appears in the Jan. 11 Cell.

Explore further: Folding of the cerebral cortex—identification of important neurons

More information: Luis de la Torre-Ubieta et al, The Dynamic Landscape of Open Chromatin during Human Cortical Neurogenesis, Cell (2018). DOI: 10.1016/j.cell.2017.12.014

Related Stories

Folding of the cerebral cortex—identification of important neurons

October 5, 2017
Folds in the cerebral cortex in mammals are believed to be indispensable for higher brain functions, but the mechanisms underlying cortical folding remain unknown. By using the latest genome editing tools, researchers have ...

Small but distinct differences among species mark evolution of human brain

November 23, 2017
The most dramatic divergence between humans and other primates can be found in the brain, the primary organ that gives our species its identity.

NeuroExpresso: Web app enables exploration of brain cell types

November 20, 2017
An online database of gene expression profiles for 36 major types of brain cells from 12 brain regions, based on mouse data from multiple laboratories, is reported in a new paper published in eNeuro. The tool is provided ...

Researchers map 'switches' that shaped the evolution of the human brain

March 5, 2015
Thousands of genetic "dimmer" switches, regions of DNA known as regulatory elements, were turned up high during human evolution in the developing cerebral cortex, according to new research from the Yale School of Medicine.

Tracking down genetic influences on brain disorders

November 27, 2017
New findings will help to identify the genetic causes of brain disorders: researchers at the Universities of Basel, Bonn and Cologne have presented a systematic catalog of specific variable locations in the genome that influence ...

Recommended for you

Blindness gene discovered

July 23, 2018
The human genome is made up of 20,000 genes, all of which may cause disease. At present, 4,141 genes have been identified as being responsible for genetic abnormalities, leaving around 16,000 genes with unknown implication ...

Analytical tool predicts genes that can cause disease by producing altered proteins

July 19, 2018
Predicting genes that can cause disease due to the production of truncated or altered proteins that take on a new or different function, rather than those that lose their function, is now possible thanks to an international ...

Childhood stress leaves lasting mark on genes

July 18, 2018
Kids who experience severe stress are more likely to develop a host of physical and mental health problems by the time they reach adulthood, including anxiety, depression and mood disorders. But how does early life stress ...

Study shows DNA methylation related to liver disease among obese patients

July 18, 2018
DNA methylation is a molecular process that helps enable our bodies to repair themselves, fight infection, get rid of environmental toxins, and even to think. But sometimes this process goes awry.

Protein found to be key component in irregularly excited brain cells

July 17, 2018
In a new study in mice, researchers have identified a key protein involved in the irregular brain cell activity seen in autism spectrum disorders and epilepsy. The protein, p53, is well-known in cancer biology as a tumor ...

World's largest study on allergic rhinitis reveals new risk genes

July 17, 2018
An international team of scientists led by Helmholtz Zentrum München and University of Copenhagen has presented the largest study so far on allergic rhinitis in the journal Nature Genetics. The data of nearly 900,000 participants ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.