Researchers discover that a 'muscle' cancer is not really a muscle cancer

January 8, 2018, St. Jude Children's Research Hospital
St. Jude researchers show that rhabdomyosarcoma also originates from endothelial cells lining blood vessels. The image shows red endothelial progenitor cells expanding and proliferating forming tumors between the green muscle fibers. Credit: St. Jude Children's Research Hospital

St. Jude Children's Research Hospital oncologists have discovered the cell type that gives rise to rhabdomyosarcoma, the most prevalent soft tissue cancer in children. Previously, scientists thought the cancer arose from immature muscle cells, because the tumor resembled muscle under the microscope. However, the St. Jude researchers discovered the cancer arises from immature progenitors that would normally develop into cells lining blood vessels.

The researchers, led by Mark Hatley, M.D., Ph.D., of the Department of Oncology, published their findings in the Jan. 8 issue of the scientific journal Cancer Cell.

Hatley said understanding the cell of origin will bring badly needed insights to aid diagnosis and treatment of . "We are still using the same chemotherapy that was in use 46 years ago, with the same outcomes," Hatley said. "A better understanding of the machinery of rhabdomyosarcoma could enable entirely new treatment approaches.

"While these tumors appear to be under the microscope, and clinicians had thought that they arose from progenitor cells, that didn't explain why the tumors can occur in tissues that don't have skeletal muscle, like bladder, prostate and liver," he continued.

Hatley said Andrew McMahon, then at Harvard University, had genetically engineered a mouse to have a biological switch that enabled researchers to selectively turn on a key piece of cellular machinery called the Hedgehog pathway. Abnormal activation of this pathway was known to trigger cancers. Jonathan Graff at the University of Texas Southwestern Medical Center used this model to study the role of the in fat cell development, however the animals developed head and neck tumors. Hatley, along with Rene Galindo, Eric Olson and in collaboration with Graff, determined these tumors were rhabdomyosarcoma.

"These tumors were not driven by muscle cells at all, so we decided to zero in on the biological machinery to find the cell of origin in these mouse tumors," Hatley said.

His experiments revealed the cells that became rhabdomyosarcoma were not muscle cells, but were that would mature into cells lining the inner surface of blood vessels. The occupy the space between muscle fibers.

"That was a complete surprise," Hatley said. "We also found that the tumors developed quickly, at the time in early development that corresponds to when such tumors develop in children with the ."

(From left) Corresponding author Mark Hatley, M.D., Ph.D., along with Catherine Drummond, Ph.D., and Jason Hanna, Ph.D. Credit: Peter Barta / St. Jude Children's Research Hospital

The finding suggested the cancer process began before birth. "Indeed, when we studied the mice at the embryonic stage, we saw the cells between the expanded explosively and formed tumors early in development," Hatley said.

The researchers also explored whether another key cancer-activating pathway, called KRAS, might trigger rhabdomyosarcoma. Other scientists had found evidence that KRAS could drive such tumors. However, when the researchers switched on KRAS in the preclinical models, an entirely different kind of formed, called angiosarcoma.

"This finding told us that the tumors in our model depended on activation of the Hedgehog pathway," Hatley said. "But it also suggested there are likely multiple cells of origin for rhabdomyosarcoma. The different location of such rhabdomyosarcomas may depend, for example, on the cell of origin."

Detailed studies of the revealed that, in turning malignant, the were abnormally reprogramming themselves during early development to be more like muscle cells. A significant finding was that the tumor cells had characteristic biological machinery that drives development of head and neck muscles. This discovery may help explain why rhabdomyosarcomas tend to occur in the head and neck.

Genetic studies of the tumor cells revealed evidence of their origin as endothelial cells. "We were able to look back in the history of these tumor cells and see that they retained genes important in endothelial cell development," Hatley said.

A major next step in the research will be to apply these preclinical findings to patients, by analyzing their tumor . Such studies will aid diagnosis and treatment of rhabdomyosarcoma.

"If the same mechanisms hold true in our patients' tumors, the findings could help us determine which patients will respond better to treatment," Hatley said. "And while the tumor model we're now studying doesn't present targets for new drugs, if we can discover the mechanism controlling that model, it may yield therapeutic drug targets." The findings may also lead to drugs to prevent rhabdomyosarcoma in children with a genetic predisposition to the cancer, Hatley said.

The unexpected discovery that rhabdomyosarcoma is not really a muscle cancer may offer broader lessons for researchers seeking the cellular origin of cancers. "These findings have taught us not to make assumptions about the origins of tumors based on their appearance under the microscope or the genes that are turned on," Hatley said. "We need to seek a detailed understanding of their developmental biology, an understanding that can guide us to new treatment strategies."

Explore further: Study links molecule to muscle maturation, muscle cancer

More information: Catherine J. Drummond et al, Hedgehog Pathway Drives Fusion-Negative Rhabdomyosarcoma Initiated From Non-myogenic Endothelial Progenitors, Cancer Cell (2018). DOI: 10.1016/j.ccell.2017.12.001

Related Stories

Study links molecule to muscle maturation, muscle cancer

December 30, 2008
Researchers at The Ohio State University Comprehensive Cancer Center have discovered that a molecule implicated in leukemia and lung cancer is also important in muscle repair and in a muscle cancer that strikes mainly children. ...

Study suggests colon cancer cells carry bacteria with them when they metastasize

November 24, 2017
(Medical Xpress)—A team of researchers working at Harvard University has found evidence that suggests a certain type of bacteria found in colon cancer tumors makes its way to tumors in other body parts by traveling with ...

Pediatric cancer stem cell identified: understanding the origin of ERMS

May 17, 2007
As published in the June 1 issue of Genes & Development, Dr. Leonard Zon (Children’s Hospital Boston) and colleagues have identified the cancer stem cell for rhabdomyosarcoma, the most common soft-tissue sarcoma of childhood.

Gene sequencing project finds family of drugs with promise for treating childhood tumor

December 9, 2013
Drugs that enhance a process called oxidative stress were found to kill rhabdomyosarcoma tumor cells growing in the laboratory and possibly bolstered the effectiveness of chemotherapy against this aggressive tumor of muscle ...

Scientists unveil powerful resource to advance treatment of pediatric solid tumors

August 30, 2017
In an effort to improve outcomes for patients with some of the deadliest childhood cancers, St. Jude Children's Research Hospital scientists have created the world's largest collection of pediatric solid tumor samples, drug-sensitivity ...

Mature Muscle Fibers Can Revert to Become Cancerous

September 1, 2006
Mature muscle fibers, rather than their less-developed neighbors, are the tissues that turn malignant in a soft-tissue cancer that strikes children and teens, researchers at UT Southwestern Medical Center and Children’s ...

Recommended for you

Researchers artificially generate immune cells integral to creating cancer vaccines

August 14, 2018
For the first time, Mount Sinai researchers have identified a way to make large numbers of immune cells that can help prevent cancer reoccurrence, according to a study published in August in Cell Reports.

Chemicals found in vegetables prevent colon cancer in mice

August 14, 2018
Chemicals produced by vegetables such as kale, cabbage and broccoli could help to maintain a healthy gut and prevent colon cancer, a new study from the Francis Crick Institute shows.

Lymphatic vessels unexpectedly promote the spread of cancer metastases

August 14, 2018
Lymphatic vessels actively contribute to the spread of cancer metastases from various organs. This unexpected realisation is the result of a joint study by researchers from ETH Zurich and the University Hospital Zurich as ...

Ovarian cancer genetics unravelled

August 14, 2018
Patterns of genetic mutation in ovarian cancer are helping make sense of the disease, and could be used to personalise treatment in future.

Researchers uncover a major new vulnerability of childhood leukemia

August 14, 2018
Childhood leukemia is a diagnosis that no family ever wants to endure. While the treatment of most types of leukemia has improved steadily over the years, a few specific types remain very difficult to treat. One of these ...

Stress hormone is key factor in failure of immune system to prevent leukemia

August 14, 2018
The human stress hormone cortisol has been identified by scientists at the University of Kent as a key factor when the immune system fails to prevent leukemia taking hold.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.