Redefined Alzheimer's biology has implications for drug design

February 7, 2018, NYU Langone Health
Credit: CC0 Public Domain

Despite the 25-year focus on the build-up in brain tissues of one protein, amyloid beta, as the purported origin of Alzheimer's disease (AD), a new study argues that it is likely triggered instead by the failure of a system that clears wastes from the brain - and actually begins decades before memories fade.

Based on findings published online February 7 in the journal PLOS ONE, researchers at the NYU School of Medicine demonstrate that the current biological understanding of AD is incomplete. The new evidence suggests that standard diagnostic tools fail to catch future AD in many patients younger than age 70, say the study authors.

In the commonly held definition of Alzheimer's disease, one type of amyloid-beta (Aβ42) starts to form clumps between nerve cells, injuring them. Worsening injury is then marked by the release and toxic buildup of a second protein called tau. Together, changes in Aβ42 and tau levels represent the standard international measure of a patient's risk for future cognitive decline.

The new study found that the build-up in the of amyloid beta cannot be the sole trigger of subsequent nerve damage because many relatively younger people who develop disease later do not show signs of the buildup.

"Once you stop assuming that the starting point of Alzheimer disease is marked by the buildup of Aβ42 in , a different picture emerges," says lead study author Mony de Leon, EdD, a professor in the Department of Psychiatry, and director of the Center for Brain Health, at NYU Langone Heath. "By recognizing an earlier disease phase, we may be able to start treating earlier and in tailored ways based on a better understanding of disease biology."

For many years, neuroscientists have sought to predict AD risk by tracking protein levels in the cerebrospinal fluid (CSF) that fills the spaces around brain tissue, and which can be sampled by lumbar puncture as part of a spinal tap. In 1999, de Leon and colleagues started collecting clinical and CSF protein level data from healthy normal subjects every two years. Combining this NYU database with two others, the current study is the largest of its kind to date, including roughly 700 patients.

Specifically, the study found that the best predictor of future AD risk was not, as currently thought, decreased CSF Aβ42 levels with elevated tau. Elevated CSF Aβ42 levels were also found to confer future AD risk.

By including in AD risk prediction models patients with either rising or falling CSF Aβ42, along with steadily rising tau, the team increased the accuracy of future risk prediction by nearly 20 percent over current models, which only consider falling levels. The improved accuracy was even more pronounced in those aged younger than 70 years, de Leon says. In mathematical terms, the relationship between Aβ42 and tau is best described by a quadratic equation rather than the current linear one, which attempts to make a curve "fit" onto a straight line.

The results add to the evidence that an increase in CSF tau over a lifetime may be the more relevant, early feature of AD than a drop in CSF Aβ42 (taken as evidence of a buildup in brain cells), researchers say.

While the actual mechanism behind Alzheimer's disease and the trajectory of Aβ42 and tau levels remains obscure, say the authors, the results provide evidence in support of the "clearance theory." It holds that the pumping of the heart, along with constriction of blood vessels, pushes cerebrospinal fluid through the spaces between brain cells, clearing potentially toxic proteins into the bloodstream. Mid-life cardiovascular changes that bring on heart failure and hypertension may lessen the CSF flow needed to clear tau, and perhaps disease-causing proteins yet to be identified.

Aside from Aβ42 which is readily deposited into the brain, the team found that CSF levels of two other common forms of that are less able to build up, Aβ38 and Aβ40, increase in proportion to rising tau throughout the normal older adult lifespan, even after CSF Aβ42 starts to decrease. This is further evidence of a decline in clearance with age, researchers say.

"Future CSF studies need to follow normal subjects, starting at age 40, for decades to get an unbiased look at the trajectory of CSF proteins and the likelihood of developing cognitive impairment decades later," says de Leon.

Explore further: AAIC: Turnover kinetics vary for different amyloid beta isoforms

Related Stories

AAIC: Turnover kinetics vary for different amyloid beta isoforms

July 20, 2017
(HealthDay)—Amyloid beta (Aβ)38 has faster turnover kinetics than Aβ40 and Aβ42, according to a study published online July 19 in Alzheimer's & Dementia to coincide with presentation at the annual Alzheimer's Association ...

Benefits for new immunoassays for measuring A-beta-42 in CSF

November 9, 2017
(HealthDay)—Concentrations of cerebrospinal fluid (CSF) β42-amyloid 42 (Aβ42) derived from new immunoassays may show improved agreement with visual flutemetamol F18 ([18F]flutemetamol)-labeled positron emission tomography ...

APOE, diagnostic accuracy of CSF biomarkers for Alzheimer's disease

August 27, 2014
Cerebral spinal fluid (CSF) levels of β-amyloid 42(Aβ42) are associated with the diagnosis of Alzheimer's disease (AD) and (Aβ) accumulation in the brain independent of apolipoprotein E (APOE) gene makeup.

Blood-based marker for Alzheimer's disease shows diagnostic potential

February 2, 2018
Researchers in Japan and Australia have used the ratio of different forms of the hallmark Alzheimer's protein, amyloid, in blood to detect those who have high levels of the protein in their brain. Their findings are published ...

A non-invasive method to detect Alzheimer's disease

December 19, 2017
New research has drawn a link between changes in the brain's anatomy and biomarkers that are known to appear at the earliest stages of Alzheimer's disease (AD), findings that could one day provide a sensitive but non-invasive ...

Immunotherapy approach to Alzheimer's studied in fly models

March 26, 2014
At Genetics Society of America's Drosophila Research Conference, scientists will report on results of using fly models to investigate passive immunotherapy to block amyloid-β42 peptides of amyloid plaques that damage the ...

Recommended for you

Scientists discover why some people with brain markers of Alzheimer's have no dementia

August 16, 2018
A new study from The University of Texas Medical Branch at Galveston has uncovered why some people that have brain markers of Alzheimer's never develop the classic dementia that others do. The study is now available in the ...

Researchers identify new genes that may contribute to Alzheimer's disease

August 14, 2018
Researchers from Boston University School of Medicine, working with scientists across the nation on the Alzheimer's Disease Sequencing Project (ADSP), have discovered new genes that will further current understanding of the ...

Deaths from resident-to-resident incidents in dementia offers insights to inform policy

August 14, 2018
Analyzing the incidents between residents in dementia in long-term care homes may hold the key to reducing future fatalities among this vulnerable population, according to new research from the University of Minnesota School ...

Scientists propose a new lead for Alzheimer's research

August 14, 2018
A University of Adelaide-led team of scientists has suggested a potential link between iron in our cells and the rare gene mutations that cause Alzheimer's disease, which could provide new avenues for future research.

Eye conditions provide new lens screening for Alzheimer's disease

August 8, 2018
Alzheimer's disease is difficult to diagnose as well as treat, but researchers now have a promising new screening tool using the window to the brain: the eye.

Potential indicator for the early detection of dementias

August 7, 2018
Researchers at the University of Basel have discovered a factor that could support the early detection of neurodegenerative diseases such as Alzheimer's or Parkinson's. This cytokine is induced by cellular stress reactions ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.