Stem-cell study points to new approach to Alzheimer's disease

March 1, 2018, University of Washington
Stem cells in culture in Dr. Jessica Young's neurosciences lab at UW Medicine, where she studies Alzheimer's disease. Credit: Jessica Young

Improving the trafficking of cellular proteins in brain cells holds possibilities for new treatments and even prevention for Alzheimer's disease, results of a new study suggest.

Researchers found that a compound that enhances the shuttling of proteins within cells reduced the production of forerunners of two proteins implicated in brain cell death.

Damage to, and destruction of, underlies this common form of dementia.

The disorder affects more than 5 million Americans. It causes loss of memory, thinking, way-finding and reasoning skills, and other debilitating problems. The disease tends to get worse with time. Aging is a major risk factor.

Brain tissue from people with Alzheimer's disease shows clumping of two types of proteins. One, beta, accumulates outside of brain cells; the other, called Tau protein, collects within the cells. Both of these toxic proteins are thought to cause the seen in Alzheimer's.

Recent research suggests that these proteins accumulate because of a defect in the system that ferries proteins within the cell. The proteins are shipped in membrane-bound packages, called endosomes.

The system that shuttles them around the cell is the endosomal network. For proteins to be properly processed, eliminated or recycled, this system must function correctly.

In the new study reported this week, the UW Medicine-led research team used human brain cells created from stem cells. The results showed that a compound that boosts the function of the endosomal network significantly cuts the production of both amyloid beta and a precursor of the Tau protein. The study will be published online March 1st in the journal Stem Cell Reports.

Stem-cell study points to new approach to Alzheimer's disease
A close up of research taking place in the stem cell lab of Jessica Young at the University of Washington School of Medicine, where she studies possible ways to correct the faulty cellular mechanisms behind Alzheimer's disease. Credit: UW Medicine

The lead author is Jessica Young, assistant professor of pathology at the UW School of Medicine in Seattle. She is a member of the UW Institute for Stem Cell and Regenerative Medicine.

She noted that the findings suggest that targeting defects in the endosomal network, through the discovery of drugs or other therapeutics, such as gene therapy, may be a promising strategy against Alzheimer's disease.

In the study, Young and her colleagues obtained skin cells from patients with Alzheimer's disease and from patients who had no signs of dementia. Because all of a person's cells share the same genome, the skin cells from patients with Alzheimer's would contain the same genetic mutations that affect the patients' brain cells.

The researchers then "reset" the skin cells by reprogramming them to act as stem cells. Such cells, called induced pluripotent , are capable of developing into any cell type.

Young and her colleagues were thereby able to create neurons that had the same genetic makeup as patients from whom they had collected skin samples.

The lab-grown cells from the Alzheimer's patients would have the same tendency to generate the excess amount of amyloid beta and the Tau protein precursor that is seen in the brains cells of people with the disorder. This made it possible for the researchers to measure amyloid beta and Tau protein production in these stem cell-derived neurons.

The researchers wanted to see if enhancing the function of the endosomal network, in a laboratory setting, would affect amyloid beta and Tau protein in these .

The scientists tested a compound that had been shown in animal studies to stabilize and boost the function of a protein assembly called the retromer.

Dr. Jessica Young describes collaborative research using stem cells from Alzheimer's patients to grow neurons and study possible ways to prevent toxin protein buildup. Credit: UW Medicine Seattle

The retromer is a key player in directing how the endosomal "packages" are shuttled about in the endosomal network to be delivered to the right destination.

"The network can be thought of as a kind of United Parcel Service with the retromer proteins serving as package labels," Young said.

The researchers found that the compound, called R33, did enhance the function of the retromer. This led to considerable reduction in the production of both the amyloid beta and the form of that readily aggregates, phosphorylated-Tau.

The researchers also used the cells to test the hypothesis that production of amyloid beta drives the production of phosphorylated-Tau.

The accumulation of the two proteins seems to be tightly linked. The scientists employed the gene editing tool CRISPR to create cells that did not make the necessary precursor of amyloid beta. Nevertheless, the R33 compound was still efficient at lowering phosphor-Tau. That result indicates that this pathway may work without the assistance of amyloid beta.

"The findings suggest that something upstream is affecting the production of and phosphorylated-Tau independently," Young said. "So one thing we're going to work on going forward will be using these cell lines to identify what this upstream defect might be and whether it, too, could be a target for new therapeutics to treat Alzheimer's."

Young noted that collaboration among scientists is what is moving the field of Alzheimer's disease research forward.

Among those collaborating with the UW Medicine team on this project were Lawrence S.B. Goldstein at the University of California, San Diego, in whose laboratory the initial studies were done and where the Alzheimer's patients' and the control and fibroblasts were generated; and Scott Small at Columbia University and Gregory Petsko at Weill Cornell Medical College, both of whom pioneered initial work on the R33 molecule.

Explore further: 'Pac-Man' gene implicated in Alzheimer's disease

More information: Jessica E. Young et al, Stabilizing the Retromer Complex in a Human Stem Cell Model of Alzheimer's Disease Reduces TAU Phosphorylation Independently of Amyloid Precursor Protein, Stem Cell Reports (2018). DOI: 10.1016/j.stemcr.2018.01.031

Related Stories

'Pac-Man' gene implicated in Alzheimer's disease

July 26, 2016
A gene that protects the brain from the harmful build-up of amyloid-beta, one of the causative proteins implicated in Alzheimer's disease, has been identified as a new target for therapy by NeuRA researchers.

Brain astrocytes linked to Alzheimer's disease

November 20, 2017
Astrocytes, the supporting cells of the brain, could play a significant role in the pathogenesis of Alzheimer's disease (AD), according to a new study from the University of Eastern Finland. This is the first time researchers ...

New Alzheimer's research suggests possible cause: The interaction of proteins in the brain

June 19, 2013
For years, Alzheimer's researchers have focused on two proteins that accumulate in the brains of people with Alzheimer's and may contribute to the disease: plaques made up of the protein amyloid-beta, and tangles of another ...

Boosting a natural protection against Alzheimer's disease

March 12, 2015
Researchers at the University of California, San Diego School of Medicine have identified a gene variant that may be used to predict people most likely to respond to an investigational therapy under development for Alzheimer's ...

Link between proteins points to possibilities for future Alzheimer's treatments

April 23, 2015
Researchers have found that the proteins that control the progression of Alzheimer's are linked in a pathway, and that drugs targeting this pathway may be a way of treating the disease, which affects 40 million people worldwide. ...

Recommended for you

Neurons with good housekeeping are protected from Alzheimer's

December 17, 2018
Some neurons in the brain protect themselves from Alzheimer's with a cellular cleaning system that sweeps away toxic proteins associated with the disease, according to a new study from Columbia University and the University ...

Growing a brain: Two-step control mechanism identified in mouse stem cells

December 17, 2018
Scientists have identified two distinct control mechanisms in the developmental transition of undifferentiated stem cells into healthy brain cells. This fundamental research using mice may inform regenerative medicine treatments ...

Does diabetes damage brain health?

December 14, 2018
(HealthDay)—Diabetes has been tied to a number of complications such as kidney disease, but new research has found that older people with type 2 diabetes can also have more difficulties with thinking and memory.

Amyloid pathology transmission in lab mice and historic medical treatments

December 13, 2018
A UCL-led study has confirmed that some vials of a hormone used in discontinued medical treatments contained seeds of a protein implicated in Alzheimer's disease, and are able to seed amyloid pathology in mice.

Study links slowed brainwaves to early signs of dementia

December 13, 2018
To turn back the clock on Alzheimer's disease, many researchers are seeking ways to effectively diagnose the neurodegenerative disorder earlier.

New discoveries predict ability to forecast dementia from single molecule

December 11, 2018
Scientists who recently identified the molecular start of Alzheimer's disease have used that finding to determine that it should be possible to forecast which type of dementia will develop over time—a form of personalized ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.