New therapeutic opportunity for the treatment of resistant malignant melanoma

June 21, 2018, University de Liege
Melanoma in skin biopsy with H&E stain — this case may represent superficial spreading melanoma. Credit: Wikipedia/CC BY-SA 3.0

A team of researchers led by Dr. Pierre Close, WELBIO researcher at the ULiège GIGA Institute and Dr. Francesca Rapino has uncovered a new therapeutic opportunity in the treatment of malignant melanoma that has acquired resistance to targeted therapies. In collaboration with researchers from VIB, they have revealed that malignant melanoma cells can reprogram their protein synthesis machinery and become addicted to a new family of enzymes that modify transfer RNAs during acquired resistance. Strikingly, the inhibition of these molecules with targeted therapies produces a strong anti-tumoral effect. These new findings, published in Nature, will contribute to the development of improved diagnostic tools and melanoma treatment.

Resistance to therapy inhibits the effectiveness of current treatments for aggressive cancers such as . The onset of resistance relates to the capability of tumor cells to circumvent the stress induced by the treatment. In order to survive, cancer cells develop a series of adaptive mechanisms by rewiring fundamental processes. Among those, reprogramming of mRNA translation favors the expression of proteins essential for tumor development. The lab of Dr. Close has been studying the contribution of wobble tRNA modification in cancer development through regulation of selective mRNA translation for a few years now, uncovering their central role in tumor initiation and metastatic potential.

Modification of certain tRNA molecules at the wobble position regulates selective mRNA translation and impact on protein expression. The GIGA-ULiège team discovered that that carry the BRAF(V600E) mutation—found in more than 50 percent of the melanoma patients—are addicted to enzymes modifying wobble uridine tRNAs (U34-tRNA).

Francesca Rapino, post-doctoral researcher in Dr. Close's lab, says, "Our research showed that wobble uridine tRNA modification enzymes are upregulated in melanoma clinical samples and have low expression in melanocytes, the normal melanin-producing cells. Strikingly, of this family of enzymes led to a very strong and specific cell death in BRAF(V600E) melanoma, but had no effect on melanocytes. This very specific effect led us to postulate that these enzymes may play an important role in melanoma development."

Growing melanoma tumors adapt their metabolism and use glucose (sugar) as source of energy. The scientists from the University of Liège demonstrated that U34-tRNA enzymes are key for the expression of proteins involved in .

Pierre Close (WELBIO, ULiège), says, "Using melanoma-derived samples, we found that U34-tRNA enzymes are essential to sustain glucose metabolism. Therefore, the inhibition of these enzymes prevents glucose metabolism in melanoma cells, and limits their energy income. As a consequence, the growth and survival of melanoma is strongly reduced after inhibition of U34-tRNA enzymes. Strikingly, we discovered that acquired resistance to targeted therapy, which strongly limits the clinical benefit of the treatment of malignant melanoma, is prevented by the inhibition of U34-tRNA enzymes. In other words, the inhibition of these enzymes synergizes with targeted therapies to block malignant melanoma growth."

This work revealed the clinical potential of U34-tRNA enzymes inhibition for the treatment of human malignant melanoma, a disease that remains extremely difficult to treat. Further research will be necessary to firmly establish the real clinical benefit of this approach and to develop therapeutic tools that could achieve this goal.

Explore further: Novel combination therapy effective for NRAS mutant and therapy resistant melanoma

More information: Francesca Rapino et al, Codon-specific translation reprogramming promotes resistance to targeted therapy, Nature (2018). DOI: 10.1038/s41586-018-0243-7

Related Stories

Novel combination therapy effective for NRAS mutant and therapy resistant melanoma

April 12, 2018
Wistar researchers have identified a novel therapeutic vulnerability in NRAS mutant melanoma and an effective strategy to address it, using a combination of two clinically relevant inhibitors, according to study results published ...

Targeting telomerase as therapeutic strategy for melanoma

April 25, 2018
Targeting telomerase was effective at killing NRAS-mutant melanoma cells, and the impact was further enhanced when the strategy was paired with an inhibitor of mitochondrial function, according to study results by The Wistar ...

Targeting telomeres to overcome therapy resistance in advanced melanoma

March 21, 2018
A study conducted at The Wistar Institute in collaboration with The University of Texas Southwestern Medical Center has demonstrated the efficacy of targeting aberrantly active telomerase to treat therapy-resistant melanoma. ...

Role of melanoma-promoting protein revealed

December 6, 2017
In a new study, Yale researchers describe the role of a protein that promotes growth of melanoma, the deadliest form of skin cancer.

Putting black skin cancer to sleep—for good

February 22, 2018
An international research team has succeeded in stopping the growth of malignant melanoma by reactivating a protective mechanism that prevents tumor cells from dividing. The team used chemical agents to block the enzymes ...

Discovery of four subtypes of melanoma points to new treatment approaches

April 12, 2018
Melanoma, a relatively rare but deadly skin cancer, has been shown to switch differentiation states—that is, to regress to an earlier stage of development—which can lead it to become resistant to treatment. Now, UCLA ...

Recommended for you

From the ashes of a failed pain drug, a new therapeutic path emerges

November 16, 2018
In 2013, renowned Boston Children's Hospital pain researcher Clifford Woolf, MB, BCh, Ph.D., and chemist Kai Johnsson, Ph.D., his fellow co-founder at Quartet Medicine, believed they held the key to non-narcotic pain relief. ...

Repurposing FDA-approved drugs can help fight back breast cancer

November 16, 2018
Screening Food and Drug Administration (FDA)-approved compounds for their ability to stop cancer growth in the lab led to the finding that the drug flunarizine can slow down the growth of triple-negative breast cancer in ...

Traditional chemotherapy superior to new alternative for oropharyngeal cancers

November 16, 2018
A drug increasingly used in combination with radiotherapy to treat a type of cancer that forms in the tonsils or the base of the tongue is inferior to a previously favored option, according to a large, clinical trial led ...

New 'SLICE' tool can massively expand immune system's cancer-fighting repertoire

November 15, 2018
Immunotherapy can cure some cancers that until fairly recently were considered fatal. In addition to developing drugs that boost the immune system's cancer-fighting abilities, scientists are becoming expert at manipulating ...

Anti-malaria drugs have shown promise in treating cancer, and now researchers know why

November 15, 2018
Anti-malaria drugs known as chloroquines have been repurposed to treat cancer for decades, but until now no one knew exactly what the chloroquines were targeting when they attack a tumor. Now, researchers from the Abramson ...

Standard chemotherapy treatment for HPV-positive throat cancer remains the most effective, study finds

November 15, 2018
A new study funded by Cancer Research UK and led by the University of Birmingham has found that the standard chemotherapy used to treat a specific type of throat cancer remains the most effective.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.