Fragile X: New drug strategy corrects behavior/biochemical measures in mouse model

July 13, 2018, Emory University
Prominent characteristics of the syndrome include an elongated face, large or protruding ears, and low muscle tone. Credit: Wikipedia

Research in mice shows that a pharmacological strategy can alleviate multiple behavioral and cellular deficiencies in a mouse model of fragile X syndrome (FXS), the most common inherited form of intellectual disability and a major single-gene cause of autism spectrum disorders.

The results are scheduled for publication in Neuropsychopharmacology, and are being presented at the NFXF International Fragile X Conference in Cincinnati.

When the compound GSK6A was given to mice lacking the Fmr1 gene, an established animal model of fragile X syndrome, it relieved symptomatic behaviors, such as impaired social interactions and inflexible decision making, which can be displayed by humans with fragile X syndrome.

The findings indicate that treatment with GSK6A or a similar compound could be a viable strategy for addressing cognitive and behavioral problems in fragile X syndrome; this would need to be tested directly in clinical trials. GSK6A inhibits one particular form of a cellular signaling enzyme: the p110β form of PI3 (phosphoinositide-3) kinase. A closely related p110β inhibitor is already in clinical trials for cancer.

"Our results suggest that p110β inhibitors can be repurposed for fragile X syndrome, and they have implications for other subtypes of that are characterized by similar alterations of this pathway," says Gary Bassell, Ph.D., professor and chair of cell biology at Emory University School of Medicine.

The paper represents a collaboration between three laboratories: two at Emory led by Bassell and Shannon Gourley, Ph.D. (Gourley is based at Yerkes National Primate Research Center), and one at Cincinnati Children's, led by Christina Gross, Ph.D.

"Right now, no proven efficient treatments are available for fragile X syndrome that are targeted to the disease mechanism," Gross says. "We think that p110β is an appropriate target because it is directly regulated by FMRP, and it is overactivated in both mouse models and patient cell lines."

While the researchers are discussing clinical trials of p110β inhibitors in fragile X syndrome, they say that long-term studies in animals are needed to ensure that undesirable side effects do not appear.

Fragile X syndrome affects around 1 in 3000 males and 1 in 6000 females, with females often having milder symptoms. Affected children display intellectual disability and delay of milestones such as speech. Fragile X syndrome frequently includes autism-like features, such as impaired social skills, gaze aversion/social anxiety, hyperactivity and repetitive behaviors.

Fragile X syndrome is caused by silencing of a single gene, FMR1, preventing production of an RNA binding protein, FMRP. FMRP controls the production of several proteins at synapses, the sites of communication between neurons.

The mouse studies described in the current paper cover short-term treatment (one or two injections). In one experiment in which mice were treated for 10 days, it normalized the densities of dendritic spines in the hippocampus, synaptic structures that are overabundant in the absence of FMRP in the and in humans with FXS.

Postdoctoral fellow Anwesha Banerjee, Ph.D., conducted experiments in Bassell's lab. Other contributors include postdoctoral fellow Durgesh Tiwari, Ph.D., graduate student Angela White at Cincinnati Children's, and Eric Klann, Ph.D. at New York University.

The test for cognitive flexibility in mice in Gourley's lab, in which the mice adapt to changed incentives for obtaining food, is described here. Another example of GSK6A's effects on mouse behavior is seen in a test of social interaction. Given a choice between spending time in a chamber with an unfamiliar mouse or in another chamber with an object, normal mice will prefer a living companion. Mice lacking FMRP show no preference, but treating them with GSK6A one hour before the test increases their social preference. The drug actually blunts social preferences in normal mice.

"It is likely that PI3 kinase—in its various forms—needs to be kept in a tight balance at the synapse," Bassell says. "Too much or too little can tip things into a suboptimal zone, especially for complex behaviors. We think targeting the excess p110β in FXS can restore signaling between upstream and downstream defects linked to the absence of FMRP."

While PI3 kinase is an important cellular enzyme, Bassell emphasizes that p110β is just one of its four forms. The researchers showed that GSK6A is selective for p110β only, which indicates that it is less likely to be toxic; more investigation of potential toxicity is necessary.

The paper also includes tests on other biochemical measures such as regulation of protein synthesis in brain tissue slices, susceptibility to seizures triggered by sound, and behaviors such as grooming and nesting.

With respect to , the fragile X community has been disappointed before. Based on encouraging studies in mouse models, drugs targeting mGluR5 glutamate receptors were tested in adolescents and adults. mGluR5 drugs did not show clear benefits; recent re-evaluation suggests the choice of outcome measures, the ages of study participants and drug tolerance may have played a role.

"We can't use mouse behavioral tests alone to understand a drug's effects," Bassell says. "It is critical to have molecular, cellular and neurophysiological phenotypes, which we and others do." He adds that models incorporating human neurons, derived from induced pluripotent stem cells, could be complementary.

GlaxoSmithKline provided the GSK6A compound used in the study. This research was supported by the National Institute of Mental Health (R21MH103748), the Eunice Kennedy Shriver National Institute of Child Health and Human Development (U54HD082013), Office of Research Infrastructure Programs (Primate centers: P51OD011132), the Brain & Behavior Research Foundation, the Cincinnati Children's Research Foundation, and Children's Healthcare of Atlanta.

Gross and Bassell have applied for a provisional patent based on this technology, and thus could potentially benefit from its commercialization.

Explore further: Fragile X syndrome: Building a case for an alternative treatment strategy

More information: Christina Gross et al, Isoform-selective phosphoinositide 3-kinase inhibition ameliorates a broad range of fragile X syndrome-associated deficits in a mouse model, Neuropsychopharmacology (2018). DOI: 10.1038/s41386-018-0150-5

Related Stories

Fragile X syndrome: Building a case for an alternative treatment strategy

April 23, 2015
New research strengthens a potential strategy for treating fragile X syndrome, the most common inherited form of intellectual disability.

Study points researchers toward new therapies for fragile X syndrome

June 29, 2018
New insights into the molecular machinations behind fragile X syndrome, the most common inherited intellectual disability, may help researchers develop potential therapies.

New clue found for Fragile X syndrome-epilepsy link

April 12, 2011
Individuals with fragile X syndrome, the most common inherited form of intellectual disability, often develop epilepsy, but so far the underlying causes are unknown. Researchers have now discovered a potential mechanism that ...

Brainstem changes underlie sound sensitivity in fragile X mouse model

December 26, 2017
Developmental changes in the brainstem driven by fragile X syndrome (FXS)—a condition that often co-occurs with autism spectrum disorder in humans—may underlie the hypersensitivity to sound observed in both humans and ...

New role for fragile X protein could offer clues for treatment

September 28, 2017
The protein behind fragile X syndrome acts as a genetic conductor, orchestrating a symphony of genes that help shape DNA's 3-D structure.

Recommended for you

Breast milk may be best for premature babies' brain development

September 21, 2018
Babies born before their due date show better brain development when fed breast milk rather than formula, a study has found.

Early warning sign of psychosis detected

September 21, 2018
Brains of people at risk of psychosis exhibit a pattern that can help predict whether they will go on to develop full-fledged schizophrenia, a new Yale-led study shows. The findings could help doctors begin early intervention ...

White matter repair and traumatic brain injury

September 20, 2018
Traumatic brain injury (TBI) is a leading cause of death and disability in the U.S., contributing to about 30 percent of all injury deaths, according to the CDC. TBI causes damage to both white and gray matter in the brain, ...

'Gut sense' is hardwired, not hormonal

September 20, 2018
If you've ever felt nauseous before an important presentation, or foggy after a big meal, then you know the power of the gut-brain connection.

Genomic dark matter activity connects Parkinson's and psychiatric diseases

September 20, 2018
Dopamine neurons are located in the midbrain, but their tendril-like axons can branch far into the higher cortical areas, influencing how we move and how we feel. New genetic evidence has revealed that these specialized cells ...

Gut branches of vagus nerve essential components of brain's reward and motivation system

September 20, 2018
A novel gut-to-brain neural circuit establishes the vagus nerve as an essential component of the brain system that regulates reward and motivation, according to research conducted at the Icahn School of Medicine at Mount ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.