Genetic mutation underlying severe childhood brain disorder identified

August 9, 2018, Case Western Reserve University
Genetic mutation underlying severe childhood brain disorder identified
Comparison of an unaffected brain and an affected brain with pachygyria. Credit: Case Western Reserve University School of Medicine.

Ashleigh Schaffer, Ph.D., assistant professor of genetics at Case Western Reserve University School of Medicine, and a team of global genetics experts have discovered a genetic mutation and the faulty development process it triggers, causing a debilitating brain-based disorder in children.

The findings, published in Nature Genetics, identify in the alpha-N-catenin gene, (aka CTNNA2), which promotes cell adhesion and causes pachygyria, one of the most serious developmental defects in humans. Most patients are severely intellectually impaired, and are unable to walk or care for themselves. Children diagnosed with the rare disease have a life expectancy of about 10 years.

Pachygyria is characterized by abnormal movement of brain , known as neurons, during development of the brain and nervous system. Using genetic sequencing and studying three families affected by the disease, the research team discovered that children with pachygyria have a mutation in both copies of the CTNNA2 gene, each alteration coming from one parent. The mutation leads to loss of CTNNA2, which the researchers then showed affected how nerve cells travel from their source of origin in the developing brain to their concluding destination in what eventually becomes the neocortex, a process called . The neocortex controls language, consciousness, sensory perception, and other vital functions. Neuronal migration is a highly complex process mediated by numerous intracellular signaling pathways.

"Our finding that alpha-N-catenin mutations cause pachygyria is an important step in understanding how neuronal development is regulated," said Schaffer, the first author of the study and a Mount Sinai Scholar.

Specifically, in healthy brains, CTNNA2 binds to actin, a protein that controls the shape of the cell and helps neurons move into correct position within the cortical layers of the brain. This binding prevents another protein, called ARP2/3, from itself binding to the actin. But the research team found that when CTNNA2 is absent due to genetic mutation, excessive amounts of ARP2/3 bind to actin, ultimately disrupting the mechanisms needed for appropriate migrating and branching out of nerve . Specifically, resultants ARP2/3 over-activity leads to excessive branching, which impairs neuron growth and stability. The finding raises the possibility of genetic engineering through techniques such as CRISPR-Cas9.

It has been known for decades that coordinated regulation of the was critical for proper neuronal positioning within the brain. (The cytoskeleton is the network of protein filaments and microtubules that support the cell, giving it shape. It also has key roles in molecule transport, cell division and cell signaling.) How the actin cytoskeleton is regulated at the molecular level in neurons was not fully clear. The new results from Schaffer and colleagues help address this shortfall.

In addition to uncovering a key gene responsible for pachygyria and describing how its mechanisms operate, the researchers discovered a variation of the condition. Typically in cases of pachygyria, either the front or back of the brain displays smooth, non-wrinkled brain surface features. In cases of normal brain development, these areas are convoluted, resembling cauliflower in appearance. In the three families studied, the researchers discovered that both the front and back of the brain were smooth. "The fact that we found this unique feature led us to conclude that a new gene, not previously linked to pachygyria, is responsible. This turned out to be the case," said Schaffer.

Members of the team, which includes researchers from throughout the U.S., Middle East, India and Europe, will further explore the implications of its findings in people with single-copy mutations of the CTNNA2 gene who have epilepsy, autism and schizophrenia.

Explore further: Mechanism leading to cortical malformation from brain-only mutations identified

More information: Ashleigh E. Schaffer et al, Biallelic loss of human CTNNA2, encoding αN-catenin, leads to ARP2/3 complex overactivity and disordered cortical neuronal migration, Nature Genetics (2018). DOI: 10.1038/s41588-018-0166-0

Related Stories

Mechanism leading to cortical malformation from brain-only mutations identified

July 3, 2018
Focal malformations of cortical development (FMCDs) are a heterogeneous group of brain cortical abnormalities. These conditions are the most common causes of refractory epilepsy in children and are highly associated with ...

Building trees: The protein controlling neuron branch growth

July 4, 2018
A protein called Metastasis-suppressor 1 (MTSS1) activates one pathway and inhibits another competing pathway, thus playing a dual role that determines how neuron branches in the brain form, according to research published ...

New insight into how autism might develop in human brain

June 26, 2018
In a study published in Stem Cell Reports, a McGill team of scientists led by Dr. Carl Ernst, researcher at the Douglas Hospital Research Centre, revealed a molecular mechanism that may play a role in the development of autism.

Neurological disease in mice and humans linked to an unlikely gene

February 1, 2018
Screening for mutations influencing the migration of nerve cells in mice, scientists found a gene that plays a role in the transport of proteins within nerve cells. If less of the protein is present in the developing mouse, ...

Gene study sheds light on causes of childhood sight loss

May 18, 2017
A genetic mutation that contributes to sight loss in children has been identified by scientists.

Recommended for you

New algorithm could improve diagnosis of rare diseases

August 17, 2018
Today, diagnosing rare genetic diseases requires a slow process of educated guesswork. Gill Bejerano, Ph.D., associate professor of developmental biology and of computer science at Stanford, is working to speed it up.

Gene silencing critical for normal breast development

August 17, 2018
Researchers have discovered that normal breast development relies on a genetic 'brake', a protein complex that keeps swathes of genes silenced.

Officials remove special rules for gene therapy experiments

August 16, 2018
U.S. health officials are eliminating special regulations for gene therapy experiments, saying that what was once exotic science is quickly becoming an established form of medical care with no extraordinary risks.

Genetic link discovered between circadian rhythms and mood disorders

August 15, 2018
Circadian rhythms are regular 24-hour variations in behaviour and activity that control many aspects of our lives, from hormone levels to sleeping and eating habits.

Ovarian cancer genetics unravelled

August 14, 2018
Patterns of genetic mutation in ovarian cancer are helping make sense of the disease, and could be used to personalise treatment in future.

New genome-editing strategy could lead to therapeutics

August 14, 2018
Researchers at UMass Medical School have developed a genome-editing strategy to correct disease-causing DNA mutations in mouse models of human genetic diseases, according to research published in the Aug. 18 edition of Nature ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.